
International Journal of Solids and Structures 40 (2003) 4585–4614

www.elsevier.com/locate/ijsolstr
A new 3-D finite element for nonlinear elasticity using
the theory of a Cosserat point

B. Nadler, M.B. Rubin *

Faculty of Mechanical Engineering, Technion––Israel Institute of Technology, 32000 Haifa, Israel

Received 18 May 2002
Abstract

The theory of a Cosserat point has been used to formulate a new 3-D finite element for the numerical analysis of

dynamic problems in nonlinear elasticity. The kinematics of this element are consistent with the standard tri-linear

approximation in an eight node brick-element. Specifically, the Cosserat point is characterized by eight director vectors

which are determined by balance laws and constitutive equations. For hyperelastic response, the constitutive equations

for the director couples are determined by derivatives of a strain energy function. Restrictions are imposed on the strain

energy function which ensure that the element satisfies a nonlinear version of the patch test. It is shown that the

Cosserat balance laws are in one-to-one correspondence with those obtained using a Bubnov–Galerkin formulation.

Nevertheless, there is an essential difference between the two approaches in the procedure for obtaining the strain

energy function. Specifically, the Cosserat approach determines the constitutive coefficients for inhomogeneous de-

formations by comparison with exact solutions or experimental data. In contrast, the Bubnov–Galerkin approach

determines these constitutive coefficients by integrating the 3-D strain energy function using the kinematic approxi-

mation. It is shown that the resulting Cosserat equations eliminate unphysical locking, and hourglassing in large

compression without the need for using assumed enhanced strains or special weighting functions.
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1. Introduction

The finite element method has a long history. Huebner (1975) suggests that mathematicians, physicists

and engineers each have legitimate claims to origins of the method in their own disciplines. In particular, he

traces the origins back as far as Euler in 1774.

Another approach to the analysis of the dynamics of continuous media is based on a system of Cosserat-

type bodies and can be traced back to the work of Wozniak (1973a), which is connected to his work on

discrete elasticity (Wozniak, 1971, 1973b). Homogeneously deformable bodies have been analyzed as: zero-

dimensional bodies (Slawianowski, 1974, 1975, 1982; Muncaster, 1984); as pseudo-rigid bodies (Cohen,
* Corresponding author. Fax: +972-4-829-5711.

E-mail address: mbrubin@tx.technion.ac.il (M.B. Rubin).

0020-7683/03/$ - see front matter � 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/S0020-7683(03)00210-5

mail to: mbrubin@tx.technion.ac.il


4586 B. Nadler, M.B. Rubin / International Journal of Solids and Structures 40 (2003) 4585–4614
1981; Cohen and Muncaster, 1984a,b) and as Cosserat points (Rubin, 1985a). In particular, the

work (Rubin, 1995, 1985a,b, ) proposed the theory of a Cosserat point as a continuum theory for modeling

finite elements in the numerical solution of problems in continuum mechanics. This numerical procedure

based on the theory of a Cosserat point has been used to study the dynamics of strings (Rubin, 1987a;
Rubin and Gottlieb, 1996) and spherically symmetric problems (Rubin, 1987b). More recently (Rubin,

2000, 2001), the theory of a Cosserat point has been generalized to model a fully nonlinear finite element for

the numerical solution of dynamic 3-D motions of elastic beams. Also, Solberg and Papadopoulos (1999)

have developed a finite element-based framework for the analysis of a collection of elastic pseudo-rigid

bodies.

Papadopoulos (2001) has developed a higher-order model of a pseudo-rigid body which allows for a

linear variation of the deformation gradient. This theory models the pseudo-rigid body with 30 degrees of

freedom (six for rigid body motion, 24 for elastic deformations). In that work, the general structure for
hyperelastic constitutive equations was considered in terms of volume integrals of a 3-D elastic strain

energy function.

The rod element developed in (Rubin, 2000, 2001) cannot be used as a 3-D element because the cross-

section of the rod is only allowed to experience general homogeneous deformation. Consequently, the

objective of this paper is to develop an eight-node 3-D brick element based on the theory of a Cosserat

point. Specifically, the theory is generalized to include eight director vectors with 24 degrees of freedom (six

for rigid body motions and 18 for elastic deformations). It will be shown that a one-to-one correspondence

exits between the balance laws of the Cosserat theory and weak forms of the equations developed using the
Bubnov–Galerkin approximation procedure.

An essential difference between the Cosserat and the Bubnov–Galerkin approaches is the procedure that

each uses to develop constitutive equations. For both approaches it is possible to develop hyperelastic

constitutive equations for which the kinetic quantities are determined by derivatives of a strain energy

function. In the Cosserat theory this strain energy is specified directly as a function of the independent

variables and the constitutive coefficients are determined by comparison with exact solutions or experi-

ments. In contrast, in the Bubnov–Galerkin approach this strain energy is determined by integrating the

3-D strain energy function with the assumption that the kinematic approximation is valid pointwise. It will
be shown that even for the simple linear theory the constitutive coefficients obtained by each of these

approaches are different. In particular, the Cosserat approach eliminates known unphysical locking phe-

nomena that are caused by the Bubnov–Galerkin coefficients when no assumed enhanced strains or special

weighting functions are used.

An outline of the paper is as follows. Section 2 describes the Cosserat direct approach, Section 3 in-

troduces the kinematics of a general brick element and Section 4 discusses the Bubnov–Galerkin approach.

Section 5 considers a nonlinear patch test, Section 6 develops the linearized equations, and Section 7

determines the constitutive coefficients for inhomogeneous deformations by considering the solution to
problems of pure bending, pure torsion, and higher order hourglassing. Section 8 develops the nodal forms

of the balance laws, Section 9 proposes the numerical solution procedure and Section 10 shows that

hourglassing is absent in large compression. Section 11 summarizes the main results, and further details are

provided in Appendices A–C.

Throughout the text, bold faced symbols are used to denote vector and tensor quantities. The symbol I

denotes the unity tensor; trðAÞ denotes the trace of the second order tensor A; AT denotes the transpose of

A; A�1 denotes the inverse of A; A�T denotes the inverse of the transpose of A; and detðAÞ denotes the
determinant of A. The scalar a � b denotes the dot product between two vectors a,b; the scalar
A � B ¼ trðABTÞ denotes the dot product between two second order tensors A,B; the vector a� b denotes

the cross product between a and b; and the second-order tensor a� b denotes the tensor product between a

and b. Furthermore, since the range of indices varies depending on the context, the usual summation

convention over repeated indices is suspended.
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2. Direct approach for the balance laws of a Cosserat point

Within the context of the direct approach, the kinematics of the Cosserat point in its reference configu-

ration are specified by eight constant director vectors Di (i ¼ 0; 1; . . . ; 7). The vector D0 locates the Cosserat
point relative to a fixed origin and the vectors Di (i ¼ 1; 2; 3) are linearly independent
D1=2 ¼ D1 �D2 �D3 > 0: ð2:1Þ
In its present configuration at time t, the Cosserat point is characterize by the eight director vectors diðtÞ
and their velocities wi, which are both functions of time only
di ¼ diðtÞ; wi ¼ _ddi ði ¼ 0; 1; . . . ; 7Þ; d1=2 ¼ d1 � d2 � d3 > 0; ð2:2Þ
where a superposed dot denotes time differentiation. The kinetic quantities include the mass m and the

constant director inertia coefficients yij (assumed to be a positive definite symmetric matrix)
y00 ¼ 1; yij ¼ yji; _yyij ¼ 0 ði; j ¼ 0; 1; . . . ; 7Þ; ð2:3Þ
the assigned director couples bi (i ¼ 0; 1; 2; . . . ; 7) due to body forces, the director couples mi due to surface

tractions on the boundaries of the Cosserat point, and the intrinsic director couples ti, which require

constitutive equations.

Now, the conservation of mass and the balances of director momentum and angular momentum can be
written in the forms, respectively,
_mm ¼ 0;
d

dt

X7
j¼0

myijwj

" #
¼ mbi þmi � ti with t0 ¼ 0; ð2:4a;bÞ

d

dt

X7
i¼0

X7
j¼0

di

"
� myijwj

#
¼

X7
i¼0

di � mbi þ
X7
i¼0

di �mi ði ¼ 0; 1; . . . ; 7Þ: ð2:4cÞ
Moreover, with the help of (2.4b) it can be shown that the balance of angular momentum is satisfied

provided that the tensor T is symmetric
T ¼ d�1=2
X7
i¼1

ti � di ¼ TT: ð2:5Þ
Also, within the context of the purely mechanical theory, the kinetic energyK, the rate of external workW
done on the Cosserat point, and the rate of material dissipation D can be defined by
K ¼
X7
i¼0

X7
j¼0

1

2
myijwi � wj; W ¼

X7
i¼0

mbi � wi þ
X7
i¼0

mi � wi; d1=2D ¼ W� _KK� m _RR P 0; ð2:6Þ
where R is the specific strain energy function.
Next, by introducing the reciprocal vectors Di and di (i ¼ 1; 2; 3) in terms of the Kronecker delta dj

i

Di �Dj ¼ dj
i ; di � dj ¼ dj

i ði; j ¼ 1; 2; 3Þ; ð2:7Þ

it is possible to define the deformation tensor F and its determinant J
F ¼ FðtÞ ¼
X3
i¼1

di �Di; J ¼ detðFÞ ¼ d1=2

D1=2
> 0; ð2:8Þ
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as measures of homogeneous deformation, and define the vectors bi (i ¼ 1; 2; 3; 4)
b1 ¼ F�1d4 �D4; b2 ¼ F�1d5 �D5; b3 ¼ F�1d6 �D6; b4 ¼ F�1d7 �D7; ð2:9Þ
as measures of inhomogeneous deformation. Furthermore, the rate of deformation tensor L and its sym-

metric part D are defined by
L ¼ _FFF�1 ¼
X3
i¼1

wi � di; D ¼ 1

2
ðLþ LTÞ ¼ DT: ð2:10Þ
Then, the equations of motion (2.4) can be used to reduce the rate of dissipation to the form
d1=2D ¼ d1=2T �Dþ
X4
i¼1

FTtðiþ3Þ � _bbi � m _RR P 0: ð2:11Þ
For a nonlinear anisotropic elastic Cosserat point, the strain energy function can be written in the form
R ¼ RðC; biÞ; C ¼ FTF; ð2:12Þ
T and ti are independent of the rate L, and the rate of dissipation vanishes so that T and ti are determined

by the hyperelastic constitutive equations
d1=2T ¼ 2mF
oR
oC

FT; tðiþ3Þ ¼ mF�T oR
obi

ði ¼ 1; 2; 3; 4Þ; ð2:13a;bÞ

ti ¼ d1=2T

"
�
X7
j¼4

tj � dj

#
� di ði ¼ 1; 2; 3Þ: ð2:13cÞ
Moreover, it can be shown that the kinematic and kinetic quantities in the Cosserat theory are properly

invariant under superposed rigid body motions. In particular, di (i ¼ 1; 2; . . . ; 7) and F are rotated and C

and bi are unaltered by superposed rigid body motions.
3. A general brick element

For a general brick element with eight nodes a material point in the stress-free reference configuration is

located by the vector X	 using the tri-linear representation
X	ðh1; h2; h3Þ ¼
X7
j¼0

Njðh1; h2; h3ÞDj; ð3:1Þ
where hi (i ¼ 1; 2; 3) are convected coordinates and Ni are shape functions
N 0 ¼ 1; N 1 ¼ h1; N 2 ¼ h2; N 3 ¼ h3;

N 4 ¼ h1h2; N 5 ¼ h1h3; N 6 ¼ h2h3; N 7 ¼ h1h2h3:
ð3:2Þ
Similarly, the same material point in the present configuration is located by the vector x	 expressed in the

form
x	ðh1; h2; h3; tÞ ¼
X7
j¼0

Njðh1; h2; h3ÞdjðtÞ: ð3:3Þ
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Fig. 1. Sketch of a general eight-node brick element showing the numbering of the nodes and the surfaces.
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Moreover, the brick region P is bounded by the six surfaces oPJ (J ¼ 1; 2; . . . ; 6), such that (Fig. 1)
jh1j6 H
2
; jh2j6 W

2
; jh3j6 L

2
;

h1 ¼ H
2

on oP1; h2 ¼ W
2

on oP2; h3 ¼ L
2
on oP3;

h1 ¼ �H
2

on oP4; h2 ¼ �W
2

on oP5; h3 ¼ � L
2
on oP6;

ð3:4Þ
where fH ; L;W g are constant lengths. Thus, the directors Di and diðtÞ are related to the vectors Di and diðtÞ
(i ¼ 0; 1; . . . ; 7) which locate the nodes in the reference and present configurations, respectively, by the

constant matrix Aij given in Appendix A, such that
Di ¼
X7
j¼0

AijDj; di ¼
X7
j¼0

Aijdj: ð3:5Þ
Moreover, it is noted that the values of the nodal vectors Di and di are limited by the assumption that the
representations (3.1) and (3.3) remain invertible. Furthermore, in view of these tri-linear representations,

the surfaces oPJ need not be planar and can have a bi-linear dependence on the surface coordinates.
4. Bubnov–Galerkin approach

Using the definitions given in Green and Adkins (1960), the conservation of mass and the balance of

linear momentum can be written as
m	 ¼ m	ðhiÞ ¼ q	g1=2; m	 _vv	 ¼ m	b	 þ t	j;j ; ð4:1a;bÞ
where m	 is independent of time, q	 is the current mass density, v	 ¼ _xx	 is the absolute velocity, b	 is the

specific (per unit mass) body force, a superposed dot denotes material time differentiation holding hi fixed,

the vectors t	j are related to the Cauchy stress tensor T	 by the formula
t	j ¼ g1=2T	gj ð4:2Þ
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and the reference covariant base vectors Gi, their reciprocal vectors G
i, the present covariant base vectors

gi, and their reciprocal vectors gi are specified by
Gi ¼ X	
;i; Gi �Gi ¼ dj

i ; G1=2 ¼ G1 �G2 �G3 > 0;
gi ¼ x	
;i; gi � gi ¼ dj

i ; g1=2 ¼ g1 � g2 � g3 > 0 ði; j ¼ 1; 2; 3Þ; ð4:3Þ
where a comma denotes partial differentiation with respect to hi. Also, a superscript (*) is used to distin-

guish quantities related to the 3-D theory from those related to the Cosserat theory.

Now, following the standard Bubnov–Galerkin approximation, (4.1b) is multiplied by the shape function
Ni, the representation (3.3) is used and the result is integrated over the region P of the element to obtain

weak forms of the balance of linear momentum. In particular, using the definitions
myij ¼
Z

P
q	NiNjdv	; mbi ¼

Z
P
½Niq	b	�dv	; mi

J ¼
Z
oPJ

N it	da	; ð4:4a–cÞ
mi ¼
X6
J¼1

mi
J ; ti ¼

X3
m¼1

Z
P
½Ni

;mg�1=2t	m�dv	 ði; j ¼ 0; 1; . . . ; 7Þ ðJ ¼ 1; 2; . . . ; 6Þ: ð4:4d;eÞ
It can be shown that the resulting weak equations are in one-to-one correspondence with the balance laws
(2.4b) of the Cosserat theory. In these equations dv	 is the volume element and da	 is the area element in the

present configuration. Also, with the help of the representation (3.3) and the definitions (4.4) it can be

shown that the global form of the balance of angular momentum is identical to the Cosserat balance law

(2.4c).

For a hyperelastic 3-D material the Cauchy stress T	 is related to the strain energy R	 and the 3-D

deformation gradient F	 by the formulas
R	 ¼ R	ðC	Þ; F	 ¼
X3
i¼1

gi �Gi; C	 ¼ F	TF	; T	 ¼ 2q	F	 oR
	

oC	 F
	T: ð4:5Þ
It then follows that within the context of the Bubnov–Galerkin approach the constitutive equations for ti

can be written in the forms (2.13) where the strain energy function R is specified by
mR ¼
Z

P
q	R	ðC	Þdv	: ð4:6Þ
It is emphasized that in evaluating the integral in (4.6) the kinematic representations (3.1) and (3.3) are
assumed to valid pointwise in the region P . Moreover, for general element shapes and general nonlinear

strain energy functions it is necessary to evaluate this integral numerically. In contrast, within the context of

the Cosserat theory the dependence of strain energy function R on the variables fC; big is proposed directly
and the constitutive constants and functions are determined by comparison with exact solutions of the 3-D

theory or experimental data. It will be shown later that even for the simple case of the linear theory of a

rectangular parallelepiped element the constitutive coefficients obtained in these two approaches are sig-

nificantly different.

For later reference it is noted that in view of the definitions (4.4c) and the specifications (3.4) only 24 of
the 48 vectors mi

J are independent since
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m1
1 ¼

H
2
m0

1; m4
1 ¼

H
2
m2

1; m5
1 ¼

H
2
m3

1; m7
1 ¼

H
2
m6

1;

m2
2 ¼

W
2
m0

2; m4
2 ¼

W
2
m1

2; m6
2 ¼

W
2
m3

2; m7
2 ¼

W
2
m5

2;

m3
3 ¼

L
2
m0

3; m5
3 ¼

L
2
m1

3; m6
3 ¼

L
2
m2

3; m7
3 ¼

L
2
m4

3;

m1
4 ¼ �H

2
m0

4; m4
4 ¼ �H

2
m2

4; m5
4 ¼ �H

2
m3

4; m7
4 ¼ �H

2
m6

4;

m2
5 ¼ �W

2
m0

5; m4
5 ¼ �W

2
m1

5; m6
5 ¼ �W

2
m3

5; m7
5 ¼ �W

2
m5

5;

m3
6 ¼ � L

2
m0

6; m5
6 ¼ � L

2
m1

6; m6
6 ¼ � L

2
m2

6; m7
6 ¼ � L

2
m4

6:

ð4:7Þ
Also, it is convenient to define the position vectors d̂dJ to the centroids of the surfaces oPJ , and define the
moments m̂mJ applied to the surfaces oPJ (about the points d̂dJ ) by the expressions
m̂mJ ¼
X7
i¼0

di �mi
J � d̂dJ �m0

J ðJ ¼ 1; 2; . . . ; 6Þ; ð4:8Þ
where it is noted that m0
J represents the total force applied to oPJ .
5. A nonlinear patch test

Following previous research on shells (Naghdi and Rubin, 1995), rods (Rubin, 1996) and points (Rubin,

2000, 2001) it is possible to impose restrictions on the strain energy function R which ensure that the theory

of a Cosserat point produces solutions that are consistent with the exact 3-D theory for all homogeneous

deformations of an arbitrary uniform homogeneous anisotropic elastic material. These restrictions are
equivalent to a nonlinear patch test on the brick element. Specifically, confining attention to such a material

it can be shown that the mass m is given by
m ¼ q	
0D

1=2V ð5:1Þ
and the restrictions on R require
oRðC; biÞ
oC

¼ oR	ðCÞ
oC

;
oRðC; bjÞ

obi

¼ 2C
oR	ðCÞ
oC

Vi for bi ¼ 0 ði ¼ 1; 2; 3; 4Þ; ð5:2Þ
where V and Vi are constants defined by Eq. (B.2). In particular, it can be shown that the 3-D deformation

is homogeneous if and only if bi vanish, which leads to F	 ¼ F. Consequently, bi are measures of inho-

mogeneous deformations.

The restrictions (5.2) can be simplified by introducing the auxiliary variables
F ¼ FðF; bi;V
iÞ ¼ F I

"
þ
X4
m¼1

bm � Vm

#
; C ¼ F

T
F ð5:3Þ
and writing the strain energy function in the form
RðC; biÞ ¼ R	ðCÞ þ WðC; biÞ ði ¼ 1; 2; 3; 4Þ: ð5:4Þ
Using this representation, the restrictions (5.2) require the strain energy of inhomogeneous deformations W
to satisfy the equations
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oWðC; biÞ
oC

¼ 0;
oWðC; biÞ

obm

¼ 0 for bi ¼ 0 ði;m ¼ 1; 2; 3; 4Þ: ð5:5Þ
The representation (5.4) is valid for a general elastic material with strain energy R	. Unfortunately,

general restrictions are not known which determine W in terms of R	 and the geometry of the structure.

Therefore, in order to develop a specific form for W it is necessary to consider specific materials. To

this end, attention is focused on a 3-D isotropic material and use is made of the work of Flory

(1961), which defines a pure measure of distortional deformation. Within this context, a simple model

for a generalized compressible Neo-Hookean material can be characterized by the strain energy

function
2q	
0R

	ðCÞ ¼ 2K	½J � 1� lnðJÞ� þ l	ðC0 � I� 3Þ; ð5:6Þ
where K	 is the bulk modulus, l	 is the shear modulus, and the pure measures of distortional deformation

are defined by the unimodular tensors fF0
;C

0
;B

0g, such that
F
0 ¼ J

�1=3
F; J ¼ detðFÞ; C

0 ¼ F
0T
F
0
; B

0 ¼ F
0
F
0T
: ð5:7Þ
Moreover, it can be shown that
2m
oR	ðCÞ
oC

¼ D1=2V K	ðJ
�

� 1ÞC�1 þ l	J
�2=3

I

�
� 1

3
ðC � IÞC�1

��
: ð5:8Þ
Next, it is convenient to introduce the normalized inhomogeneous strain measures
j1
1 ¼ W b1 �D1; j2

1 ¼ Hb1 �D2; j3
1 ¼ Lb1 �D3;

j1
2 ¼ Lb2 �D1; j2

2 ¼ W b2 �D2; j3
2 ¼ Hb2 �D3;

j1
3 ¼ Hb3 �D1; j2

3 ¼ Lb3 �D2; j3
3 ¼ W b3 �D3;

j1
4 ¼ WLb4 �D1; j2

4 ¼ HLb4 �D2; j3
4 ¼ HW b4 �D3:

ð5:9Þ
Then, as a special case, the inhomogeneous strain energy W is assumed to be independent of C and is taken
as a quadratic function of the strains ji

j (i ¼ 1; 2; 3; j ¼ 1; 2; 3; 4) of the form
2mW ¼ D1=2V ½K1ðj1
1Þ

2 þ 2K2ðj1
1j

3
3Þ þ K3ðj3

3Þ
2 þ K4ðj2

1Þ
2 þ 2K5ðj2

1j
3
2Þ þ K6ðj3

2Þ
2 þ K7ðj1

2Þ
2

þ 2K8ðj1
2j

2
3Þ þ K9ðj2

3Þ
2 þ K10ðj3

1Þ
2 þ K11ðj2

2Þ
2 þ K12ðj1

3Þ
2 þ 2K13ðj3

1j
2
2Þ þ 2K14ðj3

1j
1
3Þ

þ 2K15ðj2
2j

1
3Þ þ K16ðj1

4Þ
2 þ K17ðj2

4Þ
2 þ K18ðj3

4Þ
2�; ð5:10Þ
where fK1–K18g are constants to be determined in terms of material and geometric quantities. Furthermore,
using the strain energy representations (5.4), (5.6) and (5.10) the constitutive equations (2.13) yield
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d1=2T ¼ D1=2V K	ðJ
�

� 1ÞIþ l	 B
0

�
� 1

3
ðB0 � IÞI

��
;

t4 ¼ D1=2V K	ðJ
�

� 1ÞF�T þ l	J
�2=3

F

�
� 1

3
ðB � IÞF�T

��
V1

þ D1=2V W fK1j
1
1

	
þ K2j

3
3gd1 þ HfK4j

2
1 þ K5j

3
2gd2 þ LfK10j

3
1 þ K13j

2
2 þ K14j

1
3gd3



;

t5 ¼ D1=2V K	ðJ
�

� 1ÞF�T þ l	J
�2=3

F

�
� 1

3
ðB � IÞF�T

��
V2

þ D1=2V LfK7j
1
2

	
þ K8j

2
3gd1 þ W fK11j

2
2 þ K13j

3
1 þ K15j

1
3gd2 þ HfK5j

2
1 þ K6j

3
2gd3



;

t6 ¼ D1=2V K	ðJ
�

� 1ÞF�T þ l	J
�2=3

F

�
� 1

3
ðB � IÞF�T

��
V3

þ D1=2V HfK12j
1
3

	
þ K14j

3
1 þ K15k22gd1 þ LfK8j

1
2 þ K9j

2
3gd2 þ W fK2j

1
1 þ K3j

3
3gd3



;

t7 ¼ D1=2V K	ðJ
�

� 1ÞF�T þ l	J
�2=3

F

�
� 1

3
ðB � IÞF�T

��
V4

þ D1=2V WLfK16j
1
4gd1

	
þ HLfK17j

2
4gd2 þ HW fK18j

3
4gd3



;

ð5:11Þ
where the remainder of ti are determined by (2.13c).
6. Linearized equations

The equations of motion (2.4) and the constitutive equations (2.13) are valid for large deformations and

large rotations of the Cosserat point. The objective of this section is to develop simplified forms of these

equations which are limited to small strains, displacements and rotations. To this end, the director dis-

placements di are introduced, such that
di ¼ Di þ di ði ¼ 0; 1; . . . ; 7Þ: ð6:1Þ

In addition, it is assumed that these displacements and the kinetic quantities
fbi;mi; tig ði ¼ 0; 1; . . . ; 7Þ ð6:2Þ

remain small enough that quadratic terms in these quantities can be neglected relative to linear terms. It

then follows that the equations of motion (2.4b) can be written as
X7
j¼0

myij€ddj ¼ mbi þmi � ti with ðt0 ¼ 0Þ ði ¼ 0; 1; . . . ; 7Þ: ð6:3Þ
Next, using (6.1) and neglecting quadratic terms in di it can be shown that the kinematic quantities can be

approximated by
d1=2 ¼ D1=2 1

"
þ
X3
i¼1

di �Di

#
; F ¼ Iþ

X3
i¼1

di �Di; J ¼ 1þ
X3
i¼1

di �Di;

F ¼ I

"
þ
X3
i¼1

di �Di þ
X4
m¼1

bm � Vm

#
; J ¼ 1þ

X3
i¼1

di �Di þ
X4
m¼1

bm � Vm;

b1 ¼ d4 �
X3
i¼1

ðD4 �DiÞdi; b2 ¼ d5 �
X3
i¼1

ðD5 �DiÞdi;

b3 ¼ d6 �
X3
i¼1

ðD6 �DiÞdi; b4 ¼ d7 �
X3
i¼1

ðD7 �DiÞdi;

ð6:4Þ
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so that the linearized forms of the constitutive equations (5.11) become
T ¼ VK	
X3
i¼1

di �Di

"
þ
X4
m¼1

bm � Vm

#
Iþ V l	

X3
i¼1

di

�"
�Di þDi � di �

2

3
ðdi �DiÞI

�

þ
X4
m¼1

bm

�
� Vm þ Vm � bm � 2

3
ðbm � VmÞI

�#
;

t4 ¼ D1=2TV1 þ D1=2V W fK1j
1
1

	
þ K2j

3
3gD1 þ HfK4j

2
1 þ K5j

3
2gD2 þ LfK10j

3
1 þ K13j

2
2 þ K14j

1
3gD3



;

t5 ¼ D1=2TV2 þ D1=2V ½LfK7j
1
2 þ K8j

2
3gD1 þ W fK11j

2
2 þ K13j

3
1 þ K15j

1
3gD2 þ HfK5j

2
1 þ K6j

3
2gD3�;

t6 ¼ D1=2TV3 þ D1=2V ½HfK12j
1
3 þ K14j

3
1 þ K15j

2
2gD1 þ LfK8j

1
2 þ K9j

2
3gD2 þ W fK2j

1
1 þ K3j

3
3gD3�;

t7 ¼ D1=2TV4 þ D1=2V ½WLfK16j
1
4gD1 þ HLfK17j

2
4gD2 þ HW fK18j

3
4gD3�;

ti ¼ D1=2T

"
�
X7
j¼4

tj �Dj

#
�Di ði ¼ 1; 2; 3Þ:

ð6:5Þ

Furthermore, the linearized forms of the moments defined in (4.8) become
m̂mJ ¼
X7
i¼0

Di �mi
J � bDDJ �m0

J ðJ ¼ 1; 2; . . . ; 6Þ; ð6:6Þ
where bDDJ are the reference values of d̂dJ .
7. Determination of the constitutive constants

The theory of a Cosserat point with the constitutive equations (5.4), (5.6), (5.10) and (5.11) requires

specification of the reference directors
Di ði ¼ 0; 1; . . . ; 7Þ; ð7:1Þ

the inertia quantities
fm; yijg ði; j ¼ 0; 1; . . . 7Þ; ð7:2Þ
the isotropic 3-D material constants
fK	; l	g ð7:3Þ
and the constitutive constants
fK1–K9g; fK10–K15g; fK16–K18g; ð7:4a–cÞ
associated with inhomogeneous deformations. Also, it is necessary to specify the assigned director couples

bi.

These constitutive equations are valid for large deformations and large rotations but they also must

produce reasonable results for small deformations. Consequently, values for the constitutive constants
fK1–K18g can be determined by comparing Cosserat solutions with exact solutions of the linearized 3-D

theory of a rectangular parallelepiped. Once these constitutive constants have been determined they are
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used in the nonlinear constitutive equations to predict the response of the Cosserat point to general de-

formations and for general reference shapes of the brick element.

In the previous sections the Cosserat point has been considered to be a general brick element in its

reference configuration. Here and throughout the remainder of the text, attention is focused on a Cosserat
point which is a rectangular parallelepiped in its reference configuration. For this case the reference

directors Di can be specified such that
D1 ¼ D1 ¼ e1; D2 ¼ D2 ¼ e2; D3 ¼ D3 ¼ e3; D4 ¼ D5 ¼ D6 ¼ D7 ¼ 0; ð7:5Þ
where ei (i ¼ 1; 2; 3) are constant orthonormal base vectors. Using these specifications it follows from (2.1)

and (B.2) that
D1=2 ¼ 1; V ¼ HWL; Vi ¼ 0 ði ¼ 1; 2; 3; 4Þ: ð7:6Þ
It will be shown presently that the constants (7.4a) can be determined by comparing Cosserat solutions with

exact linear solutions for pure bending, the constants (7.4b) can be determined by considering solutions of

pure torsion, and the constants (7.4c) can be determined by considering an exact higher-order hourglass-
type solution.

The kinematic assumption (3.3) and the definition (6.1) suggest that the 3-D displacement field

u	ðh1; h2; h3; tÞ is approximated by
u	 ¼ d0 þ h1d1 þ h2d2 þ h3d3 þ h1h2d4 þ h1h3d5 þ h2h3d6 þ h1h2h3d7: ð7:7Þ
However, usually this expression is not general enough to reproduce exact solutions. Therefore, even when

the exact 3-D solution of a problem is known, it is necessary to propose some procedure for determining the

associated kinematic and kinetic quantities in the Cosserat theory. This problem has been discussed within
the context of beam equations (Rubin, 1996, 2002) and a procedure has been proposed to relate the director

displacements to integrals of the exact 3-D displacement field u	. An important characteristic of this

procedure is that it preserves the functional form of the integrated stress–strain relations. Here, this pro-

cedure is generalized and the director displacements di are compared with the exact expressions d	
i ðtÞ

defined by
V 	 ¼
Z

P
dV 	 ¼

Z L=2

�L=2

Z W =2

�W =2

Z H=2

�H=2

dh1dh2dh3 ¼ V ¼ HWL;

d	
0ðtÞ ¼

1

V 	

Z
P
u	dV 	; d	

i ðtÞ ¼
1

V 	

Z
P

ou	

ohi dV
	 ði ¼ 1; 2; 3Þ;

d	
4ðtÞ ¼

1

V 	

Z
P

o2u	

oh1oh2
dV 	; d	

5ðtÞ ¼
1

V 	

Z
P

o2u	

oh1oh3
dV 	;

d	
6ðtÞ ¼

1

V 	

Z
P

o2u	

oh2oh3
dV 	; d	

7ðtÞ ¼
1

V 	

Z
P

o3u	

oh1oh2oh3
dV 	:

ð7:8Þ
Moreover, motivated by the definitions (4.4c), the Cosserat quantities mi
J are compared with the exact

integrated effects mi	
J of the surface tractions which are given by
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mi	

1 ¼
X3
j¼1

Z L=2

�L=2

Z W =2

�W =2

Ni H
2
; h2; h3

� 

T 	
1j

H
2
; h2; h3; t

� 

ej dh

2 dh3 ði ¼ 0; 2; 3; 6Þ;

mi	

2 ¼
X3
j¼1

Z L=2

�L=2

Z H=2

�H=2

Ni h1;
W
2
; h3

� 

T 	
2j h1;

W
2
; h3; t

� 

ej dh

1 dh3 ði ¼ 0; 1; 3; 5Þ;

mi	

3 ¼
X3
j¼1

Z W =2

�W =2

Z H=2

�H=2

Ni h1; h2;
L
2

� 

T 	
3j h1; h2;

L
2
; t

� 

ej dh

1 dh2 ði ¼ 0; 1; 2; 4Þ;

mi	

4 ¼ �
X3
j¼1

Z L=2

�L=2

Z W =2

�W =2

Ni

�
� H

2
; h2; h3



T 	
1j

�
� H

2
; h2; h3; t



ej dh

2 dh3 ði ¼ 0; 2; 3; 6Þ;

mi	

5 ¼ �
X3
j¼1

Z L=2

�L=2

Z H=2

�H=2

Ni h1;

�
� W

2
; h3



T 	
2j h1;

�
� W

2
; h3; t



ej dh1 dh3 ði ¼ 0; 1; 3; 5Þ

mi	

6 ¼ �
X3
j¼1

Z W =2

�W =2

Z H=2

�H=2

Ni h1; h2;

�
� L
2



T 	
3j h1; h2;

�
� L
2
; t


ej dh

1 dh2 ði ¼ 0; 1; 2; 4Þ;

ð7:9Þ
in terms of the shape functions (3.2) and the components T 	
ij of the Cauchy stress T

	 relative to the basis ei.

These expressions are consistent with Eqs. (4.7). Also, it is convenient to use of the formulas (4.4d) and (6.6)

to define the exact kinetic quantities
mi	 ¼
X6
J¼1

mi	

J ; m̂m	
J ¼

X7
i¼0

Di �mi	

J � D̂DJ �m0	

J ðJ ¼ 1; 2; . . . ; 6Þ: ð7:10Þ
7.1. Pure bending

The solution of the equilibrium of a rectangular parallelepiped subjected to pure bending with no body

force is well known (e.g. Sokolnikoff, 1956). For the general case, there are six independent solutions which
correspond to bending moments applied in two orthogonal directions on each of the three sets of opposing

surfaces, and a summary of Lekhnitskii�s solution (1963) for orthotropic materials can be found in Section

3.14 of Rubin (2000). Using this solution (with L interchanged with H ) and specializing it to the case of

isotropic materials it can be shown with the help of (7.8)–(7.10) that the values d	
i , m

i	 and m̂m	
J become
d	
0 ¼ 0; d	

1 ¼ 0; d	
2 ¼ 0; d	

3 ¼ 0; d	
7 ¼ 0;

d	
4 ¼

12M21

E	W 3L

� ��
� m	

12M23

E	HW 3

� ��
e1 þ

12M12

E	H 3L

� ��
� m	

12M13

E	H 3W

� ��
e2;

d	
5 ¼

12M31

E	WL3

� ��
� m	

12M32

E	HL3

� ��
e1 þ

�
� m	

12M12

E	H 3L

� �
þ 12M13

E	H 3W

� ��
e3;

d	
6 ¼

�
� m	

12M31

E	WL3

� �
þ 12M32

E	HL3

� ��
e2 þ

�
� m	

12M21

E	W 3L

� �
þ 12M23

E	HW 3

� ��
e3;

m0	 ¼ m1	 ¼ m2	 ¼ m3	 ¼ m7	 ¼ 0;

m4	 ¼ HM21e1 þ WM12e2; m5	 ¼ HM31e1 þ LM13e3; m6	 ¼ WM32e2 þ LM23e3;

m̂m	
1 ¼ M31e2 � M21e3; m̂m	

2 ¼ �M32e1 þ M12e3; m̂m	
3 ¼ M23e1 � M13e2;

m̂m	
4 ¼ M31e2 þ M21e3; m̂m	

5 ¼ M32e1 � M12e3; m̂m	
3 ¼ �M23e1 þ M13e2;

ð7:11Þ
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where the rigid body displacements and rotations have been chosen so that fd	
0; d

	
1; d

	
2; d

	
3g vanish,

fM21;M31;M12;M32;M13;M23g are constant moments, E	 is Young�s modulus and m	 is Poisson�s ratio, which
are related to K	 and l	 by the expressions
K	 ¼ 2l	ð1þ m	Þ
3ð1� 2m	Þ ; E	 ¼ 2l	ð1þ m	Þ: ð7:12Þ
In view of these results, the problem of pure bending in the Cosserat theory is formulated by
specifying
mi ¼ mi	; bi ¼ 0; d0 ¼ d1 ¼ d2 ¼ d3 ¼ d7 ¼ 0;

j3
1 ¼ j2

2 ¼ j1
3 ¼ j1

4 ¼ j2
4 ¼ j3

4 ¼ 0; all other ji
j are nonzero:

ð7:13Þ
Then, using (5.9), (6.4), (6.5), (7.5) and (7.6) the nontrivial equilibrium equations (6.3) can be solved for the

kinematic variables to obtain
j1
1 ¼

K3

M21

W 2L

� �
� K2

M23

HW 2

� �
K1K3 � K2K2

; j3
3 ¼

�K2

M21

W 2L

� �
þ K1

M23

HW 2

� �
K1K3 � K2K2

;

j2
1 ¼

K6

M12

H 2L

� �
� K5

M13

H 2W

� �
K4K6 � K5K5

; j3
2 ¼

�K5

M12

H 2L

� �
þ K4

M13

H 2W

� �
K4K6 � K5K5

;

j1
2 ¼

K9

M31

WL2

� �
� K8

M32

HL2

� �
K7K9 � K8K8

; j2
3 ¼

�K8

M31

WL2

� �
þ K7

M32

HL2

� �
K7K9 � K8K8

:

ð7:14Þ
Moreover, it can easily be seen that this Cosserat solution will be consistent with the exact solution

(7.11) provided that the constitutive constants fK1–K9g are specified by the values given in Table 1.

This table also includes the coefficients predicted by the Bubnov–Galerkin solution described in

Appendix C.
7.2. Pure torsion

The solution of the equilibrium of a rectangular parallelepiped subjected to pure torsion with no

body force is well known (e.g. Sokolnikoff, 1956). For the general case there are three independent

solutions which correspond to torsional moments applied perpendicular to each of the three sets of

opposing surfaces and a summary of Lekhnitskii�s solution (1963) for orthotropic materials can be

found in Rubin (2000, Section 3.15). Using this solution (with L interchanged with H ) and specializing

it to the case of isotropic materials it can be shown with the help of (7.8)–(7.10) that the values d	
i , m

i	

and m̂m	
J become



Table 1

Comparison of the Cosserat and Bubnov–Galerkin values of the constitutive coefficients

Cosserat Bubnov–Galerkin

K1

E	

12ð1� m	2Þ
E	

12ð1� m	2Þ

� �
ð1� m	Þ2

1� 2m	
þ 1� m	

2

� �
H 2

W 2

" #

K2

m	E	

12ð1� m	2Þ
m	E	

12ð1� m	2Þ

� �
1� m	

1� 2m	

� �

K3

E	

12ð1� m	2Þ
E	

12ð1� m	2Þ

� �
ð1� m	Þ2

1� 2m	
þ 1� m	

2

� �
L2

W 2

" #

K4

E	

12ð1� m	2Þ
E	

12ð1� m	2Þ

� �
ð1� m	Þ2

1� 2m	
þ 1� m	

2

� �
W 2

H 2

" #

K5

m	E	

12ð1� m	2Þ
m	E	

12ð1� m	2Þ

� �
1� m	

1� 2m	

� �

K6

E	

12ð1� m	2Þ
E	

12ð1� m	2Þ

� �
ð1� m	Þ2

1� 2m	
þ 1� m	

2

� �
L2

H 2

" #

K7

E	

12ð1� m	2Þ
E	

12ð1� m	2Þ

� �
ð1� m	Þ2

1� 2m	
þ 1� m	

2

� �
H 2

L2

" #

K8

m	E	

12ð1� m	2Þ
m	E	

12ð1� m	2Þ

� �
1� m	

1� 2m	

� �

K9

E	

12ð1� m	2Þ
E	

12ð1� m	2Þ

� �
ð1� m	Þ2

1� 2m	
þ 1� m	

2

� �
W 2

L2

" #

K10

l	

6

H 2 þ W 2

L2

� �
b	ð1Þ l	

12

H 2 þ W 2

L2

� �

K11

l	

6

H 2 þ L2

W 2

� �
b	ð1Þ l	

12

H 2 þ L2

W 2

� �

K12

l	

6

W 2 þ L2

H 2

� �
b	ð1Þ l	

12

W 2 þ L2

H 2

� �

K13

l	

6

H 2

WL

� �
b	ð1Þ l	

12

H 2

WL

� �

K14

l	

6

W 2

HL

� �
b	ð1Þ l	

12

W 2

HL

� �

K15

l	

6

L2

HW

� �
b	ð1Þ l	

12

L2

HW

� �

K16

l	

144

2ð3� m	Þ
ð3� 2m	Þ þ

H 2

W 2
þ H 2

L2

� �
l	

144

2ð1� m	Þ
ð1� 2m	Þ þ

H 2

W 2
þ H 2

L2

� �

K17

l	

144

2ð3� m	Þ
ð3� 2m	Þ þ

W 2

H 2
þ W 2

L2

� �
l	

144

2ð1� m	Þ
ð1� 2m	Þ þ

W 2

H 2
þ W 2

L2

� �
K18

l	

144

2ð3� m	Þ
ð3� 2m	Þ þ

L2

H 2
þ L2

W 2

� �
l	

144

2ð1� m	Þ
ð1� 2m	Þ þ

L2

H 2
þ L2

W 2

� �
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d	
0 ¼ d	

1 ¼ d	
2 ¼ d	

3 ¼ d	
7 ¼ 0;

d	
4 ¼ ½x	

1 � x	
2 � x	

3U
	
3�e3; d	

5 ¼ ½�x	
1 þ x	

2U
	
2 þ x	

3�e2; d	
6 ¼ ½�x	

1U
	
1 þ x	

2 � x	
3�e1;

U	ðnÞ ¼ 1�
X1
n¼1

32

p3ð2n � 1Þ3n

" #
tanh

pð2n � 1Þn
2

� �
¼ �U	 1

n

� 

;

U	
1 ¼ U	 W

L

� 

for

W
L

6 1; U	
1 ¼ �U	 L

W

� 

for

W
L

> 1;

U	
2 ¼ U	 H

L

� 

for

H
L

6 1; U	
2 ¼ �U	 L

H

� 

for

H
L
> 1;

U	
3 ¼ U	 H

W

� 

for

H
W

6 1; U	
3 ¼ �U	 W

H

� 

for

H
W

> 1;

m0	 ¼ m1	 ¼ m2	 ¼ m3	 ¼ m7	 ¼ 0; m4	 ¼ 1

2
ðHT1 � WT2Þe3;

m5	 ¼ 1

2
ð�HT1 þ LT3Þe2; m6	 ¼ 1

2
ðWT2 � LT3Þe1;

m̂m	
1 ¼ �m̂m	

4 ¼ T1e1; m̂m	
2 ¼ �m̂m	

5 ¼ T2e2; m̂m	
3 ¼ �m̂m	

6 ¼ T3e3;

ð7:15Þ
where U	
i control warping of the cross-sections and use has been made of the fact that U	ðnÞ converges

faster for n6 1 than for n > 1. Also, the torsional stiffnesses B	
i and the torques Ti are given by
B	
1 ¼

W 2L2

3
l	b	ðn1Þ; B	

2 ¼
H 2L2

3
l	b	ðn2Þ; B	

3 ¼
H 2W 2

3
l	b	ðn3Þ;

T1 ¼ B	
1x

	
1; T2 ¼ B	

2x
	
2; T3 ¼ B	

3x
	
3;

n1 ¼ Min
W
L
;
L
W

� �
; n2 ¼ Min

H
L
;
L
H

� �
; n3 ¼ Min

H
W

;
W
H

� �
;

b	ðnÞ ¼ 1

n
1

"
� 192

p5n

X1
n¼1

1

ð2n � 1Þ5

" #
tanh

pð2n � 1Þn
2

� �#
;

ð7:16Þ
where x	
i are the constant twists per unit length and the functions ni have been specified to maximize the

convergence rate of the series solutions for the stiffnesses.

In view of these results, and with the help of (5.9) and (6.4), the problem of pure torsion in the Cosserat

theory is formulated by specifying
mi ¼ mi	; bi ¼ 0; d0 ¼ d1 ¼ d2 ¼ d3 ¼ d7 ¼ 0;

d4 ¼
j3
1

L
e3; d5 ¼

j2
2

W
e2; d6 ¼

j1
3

H
e1;

ð7:17Þ
where fj3
1; j

2
2; j

1
3g are expressed in terms of the constant twists xi per unit length, and the warping variables

Ui, such that
j3
1

L
¼ x1 � x2 � x3U3;

j2
2

W
¼ �x1 þ x2U2 þ x3;

j1
3

H
¼ �x1U1 þ x2 � x3;

T1 ¼ B1x1; T2 ¼ B2x2; T3 ¼ B3x3: ð7:18Þ
Then, using (6.5), (7.5) and (7.6) the nontrivial equilibrium equations (6.3) can be solved to obtain the

results
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B1 ¼
2W 2L2ðK10K11K12 � K12K13K13 � K11K14K14 þ 2K13K14K15 � K10K15K15Þ

W
L ðK11K12 � K15K15Þ þ ðK12K13 � K14K15Þ

	 
 ;

B2 ¼
2H 2L2ðK10K11K12 � K12K13K13 � K11K14K14 þ 2K13K14K15 � K10K15K15Þ

H
L ðK11K12 � K15K15Þ þ ðK11K14 � K13K15Þ

	 
 ;

B3 ¼
2H 2W 2ðK10K11K12 � K12K13K13 � K11K14K14 þ 2K13K14K15 � K10K15K15Þ

H
W ðK10K12 � K14K14Þ þ ðK10K15 � K13K14Þ

	 
 ;

U1 ¼
L
H ðK13K14 � K10K15Þ þ W

H ðK11K14 � K13K15Þ
	 


W
L ðK11K12 � K15K15Þ þ ðK12K13 � K14K15Þ

	 
 ;

U2 ¼
H
W ðK12K13 � K14K15Þ þ L

W ðK13K14 � K10K15Þ
	 


H
L ðK11K12 � K15K15Þ þ ðK11K14 � K13K15Þ

	 
 ;

U3 ¼
H
L ðK12K13 � K14K15Þ þ W

L ðK13K15 � K11K14Þ
	 


H
W ðK10K12 � K14K14Þ þ ðK10K15 � K13K14Þ

	 
 ;

ð7:19Þ
together with the restrictions that
W
L
ðK11K12 � K15K15Þ ¼

L
W

ðK10K12 � K14K14Þ;
H
L
ðK11K12 � K15K15Þ ¼

L
H
ðK10K11 � K13K13Þ;

H
W

ðK10K12 � K14K14Þ ¼
W
H

ðK10K11 � K13K13Þ:

ð7:20Þ
In contrast with the case of pure bending, it does not appear to be possible to choose values of the
constitutive coefficients so that the Cosserat solution will predict exact results for pure torsion for all geo-

metries of the rectangular parallelepiped. Consequently, some compromise has to be made. To this end, the

Cosserat coefficients are specified by modifying the Bubnov–Galerkin coefficients such that
K10 ¼
l	

6

H 2 þ W 2

L2

� �
b	ð1Þ; K11 ¼

l	

6

H 2 þ L2

W 2

� �
b	ð1Þ; K12 ¼

l	

6

W 2 þ L2

H 2

� �
b	ð1Þ;

K13 ¼
l	

6

H 2

WL

� �
b	ð1Þ; K14 ¼

l	

6

W 2

HL

� �
b	ð1Þ; K15 ¼

l	

6

L2

HW

� �
b	ð1Þ:

ð7:21Þ
In particular, these coefficients satisfy the restrictions (7.20) and they produce the results
B1 ¼
l	W 2L2

3

2b	ð1Þ
W
L þ L

W

� �
; B2 ¼

l	H 2L2

3

2b	ð1Þ
H
L þ L

H

� �
; B3 ¼

l	H 2W 2

3

2b	ð1Þ
H
W þ W

H

� �
;

U1 ¼
W
L � L

W
W
L þ L

W

; U2 ¼
H
L � L

H
L
H þ H

L

; U3 ¼
H
W � W

H
H
W þ W

H

:

ð7:22Þ
The Galerkin coefficients in Table 1 also satisfy the restrictions (7.20) and when they are substituted into

(7.19), they yield the same warping functions Ui as those in (7.22) for the Cosserat solution, but the stiff-

nesses Bi are different. Specifically, the functional forms of the normalized torsional stiffnesses [i.e. the

associated functions in the square brackets in (7.22) for Bi, respectively] are given by
b	ðn1Þ; C1ðn1Þ ¼
2b	ð1Þ
n1 þ 1

n1

; G1ðn1Þ ¼
1

n1 þ 1
n1

; ð7:23Þ
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Fig. 2. (a) Normalized torsional stiffnesses predicted by the exact solution b	, the Cosserat solution C1 and the Bubnov–Galerkin

solution G1 and (b) warping functions predicted by the exact solution U	
1 and the Cosserat (and Bubnov–Galerkin) solution U1.
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where b	 corresponds to the exact solution (7.16), and C1 and G1 correspond to the Cosserat and Bubnov–

Galerkin solutions, respectively. Moreover due to the symmetry of these functions the full range can be

explored by considering ð06 n1 6 1Þ. Fig. 2a compares these normalized torsional stiffnesses and Fig. 2b

compares the warping functions U	
1 and U1. From these figures it can be seen that the Cosserat solution for

normalized torsional stiffness is quite accurate and that the Cosserat solution for warping is acceptable.

Moreover, it is noted from Fig. 2a that the Bubnov–Galerkin solution has the most error for the case of

a square cross-section (n1 ¼ 1).
7.3. Higher-order hourglassing

The remaining constitutive coefficients fK16–K18g in the strain energy function (5.10) control the stiff-
nesses to higher order hourglassing associated with warping. These coefficients can be determined by

considering the exact equilibrium solution associated with no body force which is given by
u	
1 ¼ 2ð3� 2m	ÞC1h

1h2h3 � C2ðh1Þ2h3 � C3ðh1Þ2h2;

u	
2 ¼ �C1ðh2Þ2h3 þ 2ð3� 2m	ÞC2h

1h2h3 � C3h
1ðh2Þ2;

u	
3 ¼ �C1h

2ðh3Þ2 � C2h
1ðh3Þ2 þ 2ð3� 2m	ÞC3h

1h2h3;

T 	
11 ¼ l	 4ð3

	
� m	ÞC1h

2h3 � 4ð1� m	ÞC2h
1h3 � 4ð1� m	ÞC3h

1h2


;

T 	
22 ¼ l		� 4ð1� m	ÞC1h

2h3 þ 4ð3� m	ÞC2h
1h3 � 4ð1� m	ÞC3h

1h2


;

T 	
33 ¼ l		� 4ð1� m	ÞC1h

2h3 � 4ð1� m	ÞC2h
1h3 þ 4ð3� m	ÞC3h

1h2


;

T 	
12 ¼ l	 2ð3

h
� 2m	ÞC1h

1h3 þ 2ð3� 2m	ÞC2h
2h3 � C3fðh1Þ2 þ ðh2Þ2g

i
;

T 	
13 ¼ l	 2ð3

h
� 2m	ÞC1h

1h2 � C2fðh1Þ2 þ ðh3Þ2g þ 2ð3� 2m	ÞC3h
2h3

i
;

T 	
23 ¼ l	

h
� C2fðh2Þ2 þ ðh3Þ2g þ 2ð3� 2m	ÞC2h

1h2 þ 2ð3� 2m	ÞC3h
1h3

i
;

ð7:24Þ
where u	
i are the components of the 3-D displacement vector u	 relative to ei and fC1;C2;C3g are constants.

Now, it can be shown with the help of (7.8), (7.9) and (7.10) that the values d	
i , m

i	, and m̂m	
J become
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d	
0 ¼ d	

4 ¼ d	
5 ¼ d	

6 ¼ 0;

d	
1 ¼

�
� W 2

12
C3

�
e2 þ

�
� L2

12
C2

�
e3; d	

2 ¼
�
� H 2

12
C3

�
e1 þ

�
� L2

12
C1

�
e3;

d	
3 ¼

�
� H 2

12
C2

�
e1 þ

�
� W 2

12
C1

�
e2; d	

7 ¼ 2ð3� 2m	Þ½C1e1 þ C2e2 þ C3e3�;

m0	 ¼ m4	 ¼ m5	 ¼ m6	 ¼ 0;

m1	 ¼
�
� l	HWL

12
ðH 2 þ W 2ÞC3

�
e2 þ

�
� l	HWL

12
ðH 2 þ L2ÞC2

�
e3;

m2	 ¼
�
� l	HWL

12
ðH 2 þ W 2ÞC3

�
e1 þ

�
� l	HWL

12
ðW 2 þ L2ÞC1

�
e3;

m3	 ¼
�
� l	HWL

12
ðH 2 þ L2ÞC2

�
e1 þ

�
� l	HWL

12
ðW 2 þ L2ÞC1

�
e2;

m7	 ¼ l	HWL
72

f2ð3
�

� m	ÞW 2L2 þ ð3� 2m	ÞH 2ðW 2 þ L2ÞgC1

�
e1

þ l	HWL
72

f2ð3
�

� m	ÞH 2L2 þ ð3� 2m	ÞW 2ðH 2 þ L2ÞgC2

�
e2

þ l	HWL
72

f2ð3
�

� m	ÞH 2W 2 þ ð3� 2m	ÞL2ðH 2 þ W 2ÞgC3

�
e3:

ð7:25Þ
To develop the Csosserat solution it is convenient express the displacements di and d	
i in terms of their

components
di ¼
X3
j¼1

~ddijej; d	
i ¼

X3
j¼1

~dd	
ijej for i ¼ 0; 1; . . . ; 7; ð7:26a;bÞ
where a superposed (�) is used to avoid confusion with the components of the Kronecker delta symbol. In

view of these results, the Cosserat solution is taken in the form
mi ¼ mi	 ; bi ¼ 0; d1 ¼ ~dd12e2 þ ~dd13e3;

~dd2 ¼ ~dd21e1 þ ~dd23e3; ~dd3 ¼ ~dd31e1 þ ~dd32e2;

d4 ¼ d5 ¼ d6 ¼ 0; d7 ¼ ~dd71e1 þ ~dd72e2 þ ~dd73e3:

ð7:27Þ
Then, using (5.9), (6.4), (6.5), (7.5) and (7.6) the nontrivial equilibrium equations (6.3) can be solved and
compared with the exact results (7.25) to deduce that f~dd71; ~dd72; ~dd73g will be exact provided that

fK16;K17;K18g are specified by
K16 ¼
l	

144

2ð3� m	Þ
ð3� 2m	Þ

�
þ H 2

W 2
þ H 2

L2

�
; K17 ¼

l	

144

2ð3� m	Þ
ð3� 2m	Þ

�
þ W 2

H 2
þ W 2

L2

�
;

K18 ¼
l	

144

2ð3� m	Þ
ð3� 2m	Þ

�
þ L2

H 2
þ L2

W 2

�
; ð7:28Þ
which are different from the Bubnov–Galerkin values in Table 1. Furthermore, the other equations of
equilibrium give values of the other displacement components which are related to the exact values (7.25)

by the expressions
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~dd12
~dd	
12

¼ 1

2
1

�
þ H 2

W 2

�
;

~dd13
~dd	
13

¼ 1

2
1

�
þ H 2

L2

�
;

~dd21
~dd	
21

¼ 1

2
1

�
þ W 2

H 2

�
;

~dd23
~dd	
23

¼ 1

2
1

�
þ W 2

L2

�
;

~dd31
~dd	
31

¼ 1

2
1

�
þ L2

H 2

�
;

~dd32
~dd	
32

¼ 1

2
1

�
þ L2

W 2

�
:

ð7:29Þ
Thus, it is impossible to reproduce the exact solution unless the element is a cube ðH ¼ W ¼ LÞ. Never-
theless, the hourglass coefficients will be specified by (7.28) for all dimensions of the element.

7.4. Positive definite strain energy

Using the Cosserat values of the constitutive coefficients given in Table 1 it can be shown that the strain

energy function W in (5.10) for inhomogeneous deformations can be rewritten in the form
2mW ¼ E	HWL
24ð1� m	2Þ ½ð1þ m	Þfðj1

1 þ j3
3Þ

2 þ ðj2
1 þ j3

2Þ
2 þ ðj1

2 þ j2
3Þ

2g

þ ð1� m	Þfðj1
1 � j3

3Þ
2 þ ðj2

1 � j3
2Þ

2 þ ðj1
2 � j2

3Þ
2g� þ l	HWLb	ð1Þ

6
H 2 j3

1

L

�"
þ j2

2

W

�2

þ W 2 j3
1

L

�
þ j1

3

H

�2

þ L2 j2
2

W

�
þ j1

3

H

�2
#
þ HWL½K16fj1

4g
2 þ K17fj2

4g
2 þ K18fj3

4g
2�; ð7:30Þ
Consequently, in view of the usual restrictions
l	 > 0; �1 < m	 <
1

2
; ð7:31Þ
and the fact that fK16;K17;K18g are positive, it follows that W is a positive definite function of its arguments.

7.5. Director inertia coefficients

Using the expression (4.4a), the Bubnov–Galerkin values of the director inertia coefficients yij are given

by
y00 ¼ 1; y11 ¼ H 2

12
; y22 ¼ W 2

12
; y33 ¼ L2

12
; ð7:32a–dÞ

y44 ¼ H 2W 2

ð12Þ2
; y55 ¼ H 2L2

ð12Þ2
; y66 ¼ W 2L2

ð12Þ2
; y77 ¼ H 2W 2L2

ð12Þ3
; ð7:32e–hÞ

all other yij ¼ 0: ð7:32iÞ

Motivated these values, it is assumed in the Cosserat theory that (7.32a) and (7.32i) hold, but the remaining

coefficients
y11; y22; y33; y44; y55; y66; y77
� �

; ð7:33Þ
need to be determined by matching solutions of vibration problems. Specifically, attention is focused on

free-vibrations of the element. Apart from notational changes, it can be shown that the equations for
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extensional vibrations and shear vibrations are the same as those already analyzed in (Rubin, 1986). The

work their indicates that fy11; y22; y33g should be specified by
y11 ¼ H 2

p2
; y22 ¼ W 2

p2
; y33 ¼ L2

p2
; ð7:34Þ
instead of the Bubnov–Galerkin values (7.32b,c,d). In principle, the remaining values of yij could be de-

termined by comparing with the exact solution of Hutchinson and Zillmer (1983), but this is not pursued

here due to the complexity of that solution. Until this more complete analysis is done, it is tempting use the

relationships between the Cosserat values (7.34) and the Bubnov–Galerkin values (7.32b,c,d) to modify the

Bubnov–Galerkin values (7.32f,g,h) and specify
y44 ¼ H 2W 2

p4
; y55 ¼ H 2L2

p4
; y66 ¼ W 2L2

p4
; y77 ¼ H 2W 2L2

p6
: ð7:35Þ
8. Nodal forms of the balance laws

In the Cosserat theory developed in the previous sections it has been most convenient to express the

equations of motions and the constitutive equations in terms of the director quantities di (i ¼ 0; 1; . . . :; 7).
This was particularly useful in expressing the restrictions (5.5) associated with 3-D homogeneous defor-

mations. In contrast, in the finite element method the equations are usually expressed in terms of nodal

variables. Specifically, using the definitions (3.5) the director velocities wi can be expressed in terms of the

nodal velocities �wwi ¼ _�dd�ddi. Furthermore, by introducing the definitions
�yyij ¼ �yyji ¼
X7
r¼0

X7
s¼0

AriyrsAsj; �bbi ¼
X7
r¼0

Arib
r; ð8:1a;bÞ

�mmi
J ¼

X7
r¼0

Arim
r
J ðJ ¼ 1; 2; . . . 6Þ; �mmi ¼

X7
r¼0

Arim
r; �tti ¼

X7
r¼0

Arit
r; ð8:1c–eÞ
the director momentum equations (2.4b) can be written in the nodal forms
d

dt

X7
j¼0

m�yyij�wwj

" #
¼ m�bbi þ �mmi ��tti ði ¼ 0; 1; . . . ; 7Þ; ð8:2Þ
where �bbi are specific nodal body forces, �mmi are nodal contact forces, and �tti are nodal internal forces [unlike
t0 in (2.4b), the nodal vector �tt0 does not necessarily vanish]. Also, it can be shown that energy quantities
(2.6) can be written in their nodal forms
K ¼
X7
i¼0

X7
j¼0

1

2
m�yyij�wwi � �wwj; W ¼ Wb þWc;

Wb ¼
X7
i¼0

m�bbi � �wwi; Wc ¼
X7
i¼0

�mmi � �wwi;

ð8:3Þ
where Wb is the rate of work of nodal body forces and Wc is the rate of work of nodal contact forces. In

particular, it is important to emphasize that although the nodal equations are written in terms of nodal
quantities, the constitutive equations for �tti are most conveniently expressed as functions ti which depend

directly on director variables.
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Moreover, using the definitions (4.4c,d) and the results (4.7), it follows that the eight vectors �mmi are

defined in terms of the 24 independent vectors in the set mi
J . Specifically, the external nodal forces �mmi can be

expressed in the forms
�mm0 ¼
Z
oP4

1

4

�
� h2

2W
� h3

2L
þ h2h3

WL

�
t	da	 þ

Z
oP5

1

4

�
� h1

2H
� h3

2L
þ h1h3

HL

�
t	da	

þ
Z
oP6

1

4

�
� h1

2H
� h2

2W
þ h1h2

HW

�
t	da	;

�mm1 ¼
Z
oP1

1

4

�
� h2

2W
� h3

2L
þ h2h3

WL

�
t	da	 þ

Z
oP5

1

4

�
þ h1

2H
� h3

2L
� h1h3

HL

�
t	da	

þ
Z
oP6

1

4

�
þ h1

2H
� h2

2W
� h1h2

HW

�
t	da	;

�mm2 ¼
Z
oP1

1

4

�
þ h2

2W
� h3

2L
� h2h3

WL

�
t	da	 þ

Z
oP2

1

4

�
þ h1

2H
� h3

2L
� h1h3

HL

�
t	da	

þ
Z
oP6

1

4

�
þ h1

2H
þ h2

2W
þ h1h2

HW

�
t	da	;

�mm3 ¼
Z
oP2

1

4

�
� h1

2H
� h3

2L
þ h1h3

HL

�
t	da	 þ

Z
oP4

1

4

�
þ h2

2W
� h3

2L
� h2h3

WL

�
t	da	

þ
Z
oP6

1

4

�
� h1

2H
þ h2

2W
� h1h2

HW

�
t	da	;

�mm4 ¼
Z
oP3

1

4

�
� h1

2H
� h2

2W
þ h1h2

HW

�
t	da	 þ

Z
oP4

1

4

�
� h2

2W
þ h3

2L
� h2h3

WL

�
t	da	

þ
Z
oP5

1

4

�
� h1

2H
þ h3

2L
� h1h3

HL

�
t	da	;

�mm5 ¼
Z
oP1

1

4

�
� h2

2W
þ h3

2L
� h2h3

WL

�
t	da	 þ

Z
oP3

1

4

�
þ h1

2H
� h2

2W
� h1h2

HW

�
t	da	

þ
Z
oP5

1

4

�
þ h1

2H
þ h3

2L
þ h1h3

HL

�
t	da	;

�mm6 ¼
Z
oP1

1

4

�
þ h2

2W
þ h3

2L
þ h2h3

WL

�
t	da	 þ

Z
oP2

1

4

�
þ h1

2H
þ h3

2L
þ h1h3

HL

�
t	da	

þ
Z
oP3

1

4

�
þ h1

2H
þ h2

2W
þ h1h2

HW

�
t	da	;

�mm7 ¼
Z
oP2

1

4

�
� h1

2H
þ h3

2L
� h1h3

HL

�
t	da	 þ

Z
oP3

1

4

�
� h1

2H
þ h2

2W
� h1h2

HW

�
t	da	

þ
Z
oP4

1

4

�
þ h2

2W
þ h3

2L
þ h2h3

WL

�
t	da	:

ð8:4Þ
Thus, with the help of Fig. 1 it can be seen that each external nodal force is influenced only by surface
tractions on the three surfaces oPJ which intersect that node.



4606 B. Nadler, M.B. Rubin / International Journal of Solids and Structures 40 (2003) 4585–4614
Furthermore, for the linear theory it is assumed that the nodal vectors �ddi can be expressed in the

forms
�ddi ¼ Di þ �ddi ði ¼ 0; 1; . . . ; 7Þ; ð8:5Þ

where Di are the reference values of �ddi, and �ddi are displacements. In addition, it is assumed that these

displacements and the kinetic quantities
f�bbi; �mmi;�ttig ði ¼ 0; 1; . . . ; 7Þ ð8:6Þ

remain small enough that quadratic terms in these quantities can be neglected relative to linear terms. It

then follows that the linearized forms of equations of motion (8.2) can be written as
X7
j¼0

m�yyij€�dd�ddj ¼ m�bbi þ �mmi ��tti ði ¼ 0; 1; . . . ; 7Þ: ð8:7Þ
9. Numerical solution procedure

The theory of a Cosserat point developed in the previous sections can be used to formulate the numerical

solution of 3-D problems in nonlinear elasticity. Just as in the standard finite element procedure, the body is
modeled as a collection of M elements which interact through their common boundaries. Here, the Ith
element ðI ¼ 1; 2; . . . ;MÞ is modeled as a Cosserat point with boundaries IoPJ (J ¼ 1; 2; . . . ; 6).
In general, the Cosserat theory allows the element in its stress-free reference configuration to be a general

eight node brick element. The values of the constitutive coefficients fK1–K18g developed in Section 7 were

determined for the special case when the reference shape is a rectangular parallelepiped. Nevertheless, the

tensorial structure of the theory is used to generalize the equations for general brick elements. Although,

additional research is required to determine the accuracy of this generalization, the resulting theory is valid

for nonlinear deformations of a general brick element.
The kinematics and kinetics of the Ith Cosserat point are characterized by the nodal equations of Section

8 with a subscript I added to the left of each quantity (including the lengths H , W , L) and with no implied

sum on repeated upper cased indices. Specifically, the directors Idi, the director velocities Iwi, the nodal

directors I
�ddi and nodal director velocities I �wwi of the Ith element are denoted by
Idi; Iwi ¼ I
_ddi; I

�ddi; I �wwi ¼ I
_�dd�ddi ðI ¼ 1; 2; . . . ;MÞ ði ¼ 0; 1; . . . ; 7Þ: ð9:1Þ
Also, the nodal equations of director momentum (8.2) of the Ith element become
X7
j¼0

ImI�yyij
I _�ww�wwj ¼ ImI

�bbi þ I �mm
i � I�tt

i ðI ¼ 1; 2; . . . ;MÞ ði ¼ 0; 1; . . . ; 7Þ; ð9:2Þ
where the constitutive equations for the nodal internal forces I�tt
i are determined by the formulas developed

in the previous sections and the nodal contact forces I �mm
i are determined by formulas of the type (8.4).

For a given topology of the body, the M elements are characterized by N global nodes which are located

relative to a fixed origin by the global position vectors d	K (K ¼ 1; 2; . . . ;N ). Consequently, the Cosserat

points are connected by the kinematic coupling conditions
I
�dd0 or I

�dd1 or I
�dd2 or I

�dd3 or I
�dd4 or I

�dd5 or I
�dd6 or I

�dd7

n o
¼ d	K ðK ¼ 1; 2; . . . ;NÞ: ð9:3Þ
The Cosserat points are also connected by the kinetic coupling conditions
X
ðI;i:KÞ

I �mm
i ¼ m	

K ; ð9:4Þ
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where m	
K are nodal external concentrated forces, and the special summation symbol indicates that the

summation is performed over all forces i (i ¼ 0; 1; . . . ; 7) and all elements I (I ¼ 1; 2; . . . ;M) which have

nodes that coincide with the Kth node. Next, solving the equations of motion (9.2) for I �mm
i, these kinetic

coupling conditions can be rewritten in the forms
X
ðI;i:KÞ

X7
j¼0

ImI�yyij
I _�ww�wwj

"
� ImI

�bbi þ I�tt
i

#
¼ m	

K ðK ¼ 1; 2; . . . ;NÞ: ð9:5Þ
If the Kth node is an interior node then expressions of the type (8.4) indicate that the external nodal forces
due to the elements that have the common node K are associated with the common boundaries that in-

tersect that node. Consequently, since the traction vector is a linear function of the outward normal, it

follows that the external nodal force m	
K vanishes for interior nodes
m	
K ¼ 0 for interior nodes K: ð9:6Þ
At an exterior node K the value of m	
K is specified by
m	
K ¼

X
ðI ;i:KÞ

½I �mmi�Ext; ð9:7Þ
where the value of ½I �mmi�Ext is determined by expressions of the type (8.4) with the only nonzero terms being

those associated with the exterior surfaces that intersect the node K.
The discretized equations of motion (9.5) represent N vector ordinary differential equations to determine

the N nodal vectors d	K as functions of time. Since these equations are second-order in time it follows that

initial conditions must be specified of the forms
d	Kð0Þ ¼ specified; _dd	Kð0Þ ¼ specified: ð9:8Þ
The boundary conditions associated with the global body under consideration appear in the equations of
motion (9.5) tacitly through the nodal contact forces m	

K . To analyze the nature of these conditions it is

convenient to use (8.3) to express the rate of work done on the Ith element due to nodal contact forces in

the form
IWc ¼
X7
i¼0

I �mm
i � I �wwi: ð9:9Þ
Consequently, with the help of the coupling equations (9.3) and (9.4), the rate of work done on the entire

body due to contact forces can be written as
Wc ¼
XM

I¼1
IWc ¼

XN

K¼1
m	

K � _dd	K : ð9:10Þ
It therefore follows that the work due to surface tractions is done on the body only through external nodal

forces applied to external nodes. Specifically, the boundary conditions can be specified at each external

node as kinematic conditions
d	KðtÞ ¼ specified; ð9:11Þ
with m	
K being determined by the equations of motions, or kinetic conditions
m	
KðtÞ ¼ specified; ð9:12Þ
with d	K being determined by the equations of motion, or by mixed–mixed boundary conditions where some

components of d	K and the other components of m	
K are specified at the same node K.
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10. Large deformation uniaxial stress

It is well known (Wriggers and Reese, 1996; Reese and Wriggers, 2000; Reese et al., 2000; Wall et al.,

2000) that standard finite elements for nonlinear elasticity can lose stiffness to hourglassing when they are
severely compressed. Here, it is shown that the Cosserat point developed in the previous sections does not

exhibit this unphysical phenomena. To this end, consider the large deformation associated with uniaxial

uniform Cauchy stress T 	
33 acting in the e3 direction on the block shown in Fig. 3. In order to explore the

effects of potential hourglassing, a nonlinear deformation is considered for which the nodal vectors are

given by
Fig. 3

the ex
d	1 ¼ � bH
2
e1 �

bW
2

e2 � de2; d	2 ¼ � bW
2

e2 � de2;

d	3 ¼
bH
2
e1 �

bW
2

e2 � de2; d	4 ¼
bH
2
e1 þ de2;

d	5 ¼
bH
2
e1 þ

bW
2

e2 � de2; d	6 ¼
bW
2

e2 � de2;

d	7 ¼ � bH
2
e1 þ

bW
2

e2 � de2; d	8 ¼ � bH
2
e1 þ de2; d	9 ¼ de2;

d	K ¼ d	K�9 þ
aL
2
e3 þ 2de2 ðK ¼ 10; 11; 12; 14; 15; 16Þ;

d	K ¼ d	K�9 þ
aL
2
e3 � 2de2 ðK ¼ 13; 17; 18Þ;

d	K ¼ d	K�18 þ aLe3 ðK ¼ 19; 20; . . . ; 27Þ;

ð10:1Þ
where d characterizes the magnitude of hourglassing (Fig. 4) and a and b are stretches associated with the

underlying homogeneous deformation (d ¼ 0). Now, using the fact that the dimensions of the Ith element
are specified by
.

IH ¼ H
2
; IW ¼ W

2
; IL ¼ L

2
; ð10:2Þ
2∂P1
e2

e3

e1

3∂P1
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Sketch of a 3-D block discretized by eight elements showing the global numbering of the nodes and the element numbering of

posed surfaces.
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Fig. 4. Sketch of nonlinear deformation of a 3-D block with assumed hourglass modes.
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it can be shown that the directors Idi in the Ith element are given by
1d0 ¼
1

4
½�bHe1 � bW e2 þ aLe3�; 2d0 ¼

1

4
½bHe1 � bW e2 þ aLe3�;

3d0 ¼
1

4
½bHe1 þ bW e2 þ aLe3�; 4d0 ¼

1

4
½�bHe1 þ bW e2 þ aLe3�;

Id0 ¼ I�4d0 þ
1

2
aLe3 for I ¼ 5; 6; 7; 8;

Id1 ¼ be1; Id2 ¼ be2; Id3 ¼ ae3; Id4 ¼ Id5 ¼ Id7 ¼ 0 for I ¼ 1; 2; . . . ; 8;

Id6 ¼ � 16

WL
de2 for I ¼ 1; 2; 7; 8; Id6 ¼

16

WL
de2 for I ¼ 3; 4; 5; 6:

ð10:3Þ
Moreover, the reference values IDi of the directors are given by
ID1 ¼ e1; ID2 ¼ e2; ID3 ¼ e3; ID4 ¼ ID5 ¼ ID6 ¼ ID7 ¼ 0 for I ¼ 1; 2; . . . ; 8; ð10:4Þ
so that with the help of (10.2) and the kinematical definitions (2.8), (2.9) and (5.9), it can be shown that
IF ¼ bðe1 � e1 þ e2 � e2Þ þ aðe3 � e3Þ; J ¼ ab2; Ib1 ¼ Ib2 ¼ Ib4 ¼ 0 for I ¼ 1; 2; . . . ; 8;

Ib3 ¼ � 16

bWL
de2 for I ¼ 1; 2; 7; 8; Ib3 ¼

16

bWL
de2 for I ¼ 3; 4; 5; 6;

Ij
i
1 ¼ Ij

i
2 ¼ Ij

i
4 ¼ 0 for I ¼ 1; 2; . . . ; 8 and i ¼ 1; 2; 3;

Ij
1
3 ¼ Ij

3
3 ¼ 0 for I ¼ 1; 2; . . . ; 8;

Ij
2
3 ¼ � 8

bW
d for I ¼ 1; 2; 7; 8; Ij

2
3 ¼

8

bW
d for I ¼ 3; 4; 5; 6:

ð10:5Þ
Furthermore, using (2.13c), (5.7), (5.11), (7.6), (10.2) and using the Cosserat material constants in Table 1

(with H , W , L replaced by IH , IW , IL), the constitutive equations for each element can be written in the
forms
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Id1=2
IT ¼ HWL

8
K	ðJ

�
� 1ÞIþ l	ðb2 � a2Þ

3J 2=3
fðe1 � e1 þ e2 � e2Þ � 2ðe3 � e3Þg

�
;

I t
0 ¼ I t

4 ¼ I t
7 ¼ 0; I t

1 ¼ HWL
8b

K	ðJ
�

� 1Þ þ l	ðb2 � a2Þ
3J 2=3

�
e1;

I t
2 ¼ HWL

8b
K	ðJ

�
� 1Þ þ l	ðb2 � a2Þ

3J 2=3

�
e2 �

2m	E	HL
3ð1� m	2Þb3

� �
d2e2;

I t
3 ¼ HWL

8a
K	ðJ

�
� 1Þ � 2l	ðb2 � a2Þ

3J 2=3

�
e3 for I ¼ 1; 2; . . . ; 8;

I t
5 ¼ � m	E	HWL2

24ð1� m	2Þb2

� �
de1; I t

6 ¼ � m	E	HWL2

24ð1� m	2Þb2

� �
de2 for I ¼ 1; 2; 7; 8;

I t
5 ¼ m	E	HWL2

24ð1� m	2Þb2

� �
de1; I t

6 ¼ m	E	HWL2

24ð1� m	2Þb2

� �
de2 for I ¼ 3; 4; 5; 6:

ð10:6Þ
For the problem under consideration, body force is neglected, and the top ðh3 ¼ LÞ and bottom ðh3 ¼ 0Þ
surfaces are considered to be frictionless parallel planes with the vertical ðe3Þ distance between them being

controlled by the stretch a. Also, the lateral surfaces (h1 ¼ �H=2; h2 ¼ �W =2) are traction free with the
magnitude of the stretch b being determined by the solution of the problem. Consequently, the external

nodal forces m	
K satisfy the conditions
m	
K � e1 ¼ 0; m	

K � e2 ¼ 0 for K ¼ 1–9; 19–27

m	
K ¼ 0 for K ¼ 10–18;

ð10:7Þ
where the vertical components of the external nodal forces on the top and bottom surfaces are determined

by the solution of the problem.
Next, the solution must satisfy each of the kinetic coupling equation (9.5). However, in order to show

that the solution of this problem necessarily corresponds to homogeneous deformation with no hourglass

mode ðd ¼ 0Þ it is sufficient to consider the equation of equilibrium at the exterior node K ¼ 10. Specifi-

cally, it can be shown that the kinetic equation (9.5) corresponding to (K ¼ 10) reduces to
� 1

W
HWL
8b

K	ðJ
��

� 1Þ þ l	ðb2 � a2Þ
3J 2=3

�
e2 �

2m	E	HL
3ð1� m	2Þb3

� �
d2e2

�
þ 4

HL
m	E	HWL2

24ð1� m	2Þb2

� �
de1

þ 4

WL
m	E	HWL2

24ð1� m	2Þb2

� �
de2 ¼ 0; ð10:8Þ
which can be solved to deduce that
d ¼ 0; K	ðJ � 1Þ þ l	ðb2 � a2Þ
3J 2=3

¼ 0: ð10:9a; bÞ
The first equation indicates that the hourglass mode necessarily vanishes for all values of the stretch a, and
the second equation is used to determine the value of b for a specified value of a. Consequently, the
resulting solution is consistent with the exact solution for homogeneous deformation of the block.
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11. Summary

The theory of a Cosserat point has been used to formulate a new 3-D finite element for the numerical

analysis of dynamic problems in nonlinear elasticity. Within the context of the direct approach to the
development of the Cosserat theory, the Cosserat point is characterized by eight director vectors which are

determined by balance laws and constitutive equations. For hyperelastic response, the constitutive equa-

tions for the director couples are determined by derivatives of a strain energy function. Restrictions are

imposed on the strain energy function which ensure that the element satisfies a nonlinear version of the

patch test.

The kinematics of this element are consistent with the standard tri-linear approximation in an eight-node

brick element. Nodal equations have been developed which are assembled using common finite element

methods based on kinematic and kinetic coupling at common nodes. Specifically, the nodal equations
represent a system of ordinary differential equations which depend on time only. These equations can be

integrated using standard numerical methods to determine the dynamic response of a nonlinear elastic

body.

It has been shown that the Cosserat balance laws are in one-to-one correspondence with those obtained

using a Bubnov–Galerkin formulation. Nevertheless, there is an essential difference between the two ap-

proaches in the procedure for obtaining the strain energy function. Specifically, the constitutive coefficients

for inhomogeneous deformations in the Cosserat approach are determined by comparison with exact

solutions or experimental data. In contrast, the Bubnov–Galerkin approach determines these constitutive
coefficients by integrating the 3-D strain energy function using the kinematic approximation.

The constitutive coefficients in Table 1 cause the Cosserat theory to predict exact results for pure bending

and accurate results for pure torsion of a rectangular parallelepiped, even in the limit that the element

becomes a thin plate. In contrast, the constitutive coefficients associated with the Bubnov–Galerkin

approach yield an incorrect response even for a cube and they exhibit unphysical stiffness for pure bending

in this plate limit. Also, it is known (e.g. Simo et al., 1993) that the Bubnov–Galerkin coefficients exhibit

locking for bending in the incompressible limit when m	 ¼ 1=2 [i.e. the Bubnov–Galerkin coefficients

fK1–K9g in Table 1 become infinite]. In contrast, the Cosserat coefficients fK1–K9g in Table 1 remain finite
so this locking is absent in the Cosserat theory.

Although the constitutive coefficients for inhomogeneous deformations in the Cosserat theory were

determined by comparison with exact linear solutions, the resulting theory is valid for large deformations.

Furthermore, the tensorial structure of the Cosserat theory is used model general reference geometry of the

brick element. With the help of this nonlinear theory it has also been shown that the Cosserat theory

eliminates unphysical hourglassing in large compression without the need for using assumed enhanced

strains or special weighting functions. This result is partially due to the specific nonlinear kinematic vari-

ables that are introduced in the Cosserat theory.
Ultimately, the response of the finite element formulation is dependent on the functional form of the

strain energy and not on the specific procedure used to obtain it. Consequently, the Cosserat approach,

which proposes a functional form of the strain energy directly in terms of the independent variables, yields

an efficient use of the reduced number of degrees of freedom in the element. Also, it appears that the same

3-D element can be used in the limit of thin plates.
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Appendix A. Transformation matrix for the nodal representation

Using the numbering system shown in Fig. 1, the transformation matrix Aij in (3.5) is given by
A0j ¼
1

8
f1; 1; 1; 1; 1; 1; 1; 1g;

A1j ¼
1

4H
f�1; 1; 1;�1;�1; 1; 1;�1g;

A2j ¼
1

4W
f�1;�1; 1; 1;�1;�1; 1; 1g;

A3j ¼
1

4L
f�1;�1;�1;�1; 1; 1; 1; 1g;

A4j ¼
1

2HW
f1;�1; 1;�1; 1;�1; 1;�1g;

A5j ¼
1

2HL
f1;�1;�1; 1;�1; 1; 1;�1g;

A6j ¼
1

2WL
f1; 1;�1;�1;�1;�1; 1; 1g;

A7j ¼
1

HWL
f�1; 1;�1; 1; 1;�1; 1;�1g:

ðA:1Þ
Appendix B. Details of homogeneous deformations

The quantities V and Vi in (5.1) and the restrictions (5.2) associated with the nonlinear patch test for

homogeneous deformations are related to integrals over the region P0 occupied by the point in its reference

configuration by the formulas
D1=2V ¼
Z

P0

dV 	; D1=2V Vi ¼
X3
m¼1

Z
P0

½N ðiþ3Þ
;m Gm�dV 	 ði ¼ 1; 2; 3; 4Þ; ðB:1Þ
where dV 	 ¼ G1=2 dh1 dh2 dh3 is the reference element of volume and the reciprocal vectors Gi are defined in

(4.3). Specifically, using the kinematic representation (3.1) and defining P0 by (3.4), these integrals yield the

expressions
D1=2V ¼ HWL D1=2

�
þ H 2

12
D4 �D5 �D1 þ

W 2

12
D6 �D4 �D2 þ

L2

12
D5 �D6 �D3

�
;

D1=2V V1 ¼ HWL
H 2

12
D5

�
�D1 þ

W 2

12
D2 �D6

�
;

D1=2V V2 ¼ HWL
H 2

12
D1

�
�D4 þ

L2

12
D6 �D3

�
;

D1=2V V3 ¼ HWL
W 2

12
D4

�
�D2 þ

L2

12
D3 �D5

�
; D1=2V V4 ¼ 0:

ðB:2Þ
Appendix C. Determination of the Bubnov–Galerkin coefficients

Using the kinematic approximation (7.7) it follows that the linearized 3-D strain tensor E	 can be

expressed in the form
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E	 ¼
X3
i¼1

1

2

ou	

ohi

�
� ei þ ei �

ou	

ohi

�
¼

X6
i¼0

NiEi;

E0 ¼ E ¼ 1

2
½d1 � e1 þ e1 � d1 þ d2 � e2 þ e2 � d2 þ d3 � e3 þ e3 � d3�;

E1 ¼
1

2
½d4 � e2 þ e2 � d4 þ d5 � e3 þ e3 � d5�;

E2 ¼
1

2
½d4 � e1 þ e1 � d4 þ d6 � e3 þ e3 � d6�;

E3 ¼
1

2
½d5 � e1 þ e1 � d5 þ d6 � e2 þ e2 � d6�;

E4 ¼
1

2
½d7 � e3 þ e3 � d7�; E5 ¼

1

2
½d7 � e2 þ e2 � d7�; E6 ¼

1

2
½d7 � e1 þ e1 � d7�:

ðC:1Þ
Next, for the linear theory of an elastically isotropic material, the 3-D strain energy function corresponding

to (5.6) becomes
q	
0R

	ðE	Þ ¼ 1

2
K	ðE	 � IÞ2 þ l	E	0 � E	0 ¼ l	 m	

1� 2m	

� �
ðE	 � IÞ2

�
þ E	 � E	

�
; E	0 ¼ E	 � 1

3
ðE	 � IÞI:

ðC:2Þ
Consequently, for the rectangular parallelepiped discussed in Section 8 the strain energy (4.6) can be re-

written in the form
mR ¼
Z L=2

�L=2

Z W =2

�W =2

Z H=2

�H=2

q	
0R

	ðE	Þdh1 dh2 dh3; ðC:3Þ
which yields
mR ¼ mR	ðEÞ þ mW;

mW ¼ H 2

12
mR	ðE1Þ þ

W 2

12
mR	ðE2Þ þ

L2

12
mR	ðE3Þ

þ H 2W 2

144
mR	ðE4Þ þ

H 2L2

144
mR	ðE5Þ þ

W 2L2

144
mR	ðE6Þ:

ðC:4Þ
Also, with the help of (5.9), (6.4) and (7.6) it can be shown that
d4 ¼
j1
1

W
e1 þ

j2
1

H
e2 þ

j3
1

L
e3; d5 ¼

j1
2

L
e1 þ

j2
2

W
e2 þ

j3
2

H
e3;

d6 ¼
j1
3

H
e1 þ

j2
3

L
e2 þ

j3
3

W
e3; d7 ¼

j1
4

WL
e1 þ

j2
4

HL
e2 þ

j3
4

HW
e3:

ðC:5Þ
Next, comparison of (C.4) with the expression (7.15) yields the Bubnov–Galerkin coefficients given in

Table 1.
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