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Abstract

The theory of a Cosserat point has been used to formulate a new 3-D finite element for the numerical analysis of
dynamic problems in nonlinear elasticity. The kinematics of this element are consistent with the standard tri-linear
approximation in an eight node brick-element. Specifically, the Cosserat point is characterized by eight director vectors
which are determined by balance laws and constitutive equations. For hyperelastic response, the constitutive equations
for the director couples are determined by derivatives of a strain energy function. Restrictions are imposed on the strain
energy function which ensure that the element satisfies a nonlinear version of the patch test. It is shown that the
Cosserat balance laws are in one-to-one correspondence with those obtained using a Bubnov—Galerkin formulation.
Nevertheless, there is an essential difference between the two approaches in the procedure for obtaining the strain
energy function. Specifically, the Cosserat approach determines the constitutive coefficients for inhomogeneous de-
formations by comparison with exact solutions or experimental data. In contrast, the Bubnov-Galerkin approach
determines these constitutive coefficients by integrating the 3-D strain energy function using the kinematic approxi-
mation. It is shown that the resulting Cosserat equations eliminate unphysical locking, and hourglassing in large
compression without the need for using assumed enhanced strains or special weighting functions.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The finite element method has a long history. Huebner (1975) suggests that mathematicians, physicists
and engineers each have legitimate claims to origins of the method in their own disciplines. In particular, he
traces the origins back as far as Euler in 1774.

Another approach to the analysis of the dynamics of continuous media is based on a system of Cosserat-
type bodies and can be traced back to the work of Wozniak (1973a), which is connected to his work on
discrete elasticity (Wozniak, 1971, 1973b). Homogeneously deformable bodies have been analyzed as: zero-
dimensional bodies (Slawianowski, 1974, 1975, 1982; Muncaster, 1984); as pseudo-rigid bodies (Cohen,
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1981; Cohen and Muncaster, 1984a,b) and as Cosserat points (Rubin, 1985a). In particular, the
work (Rubin, 1995, 1985a,b, ) proposed the theory of a Cosserat point as a continuum theory for modeling
finite elements in the numerical solution of problems in continuum mechanics. This numerical procedure
based on the theory of a Cosserat point has been used to study the dynamics of strings (Rubin, 1987a;
Rubin and Gottlieb, 1996) and spherically symmetric problems (Rubin, 1987b). More recently (Rubin,
2000, 2001), the theory of a Cosserat point has been generalized to model a fully nonlinear finite element for
the numerical solution of dynamic 3-D motions of elastic beams. Also, Solberg and Papadopoulos (1999)
have developed a finite element-based framework for the analysis of a collection of elastic pseudo-rigid
bodies.

Papadopoulos (2001) has developed a higher-order model of a pseudo-rigid body which allows for a
linear variation of the deformation gradient. This theory models the pseudo-rigid body with 30 degrees of
freedom (six for rigid body motion, 24 for elastic deformations). In that work, the general structure for
hyperelastic constitutive equations was considered in terms of volume integrals of a 3-D elastic strain
energy function.

The rod element developed in (Rubin, 2000, 2001) cannot be used as a 3-D element because the cross-
section of the rod is only allowed to experience general homogeneous deformation. Consequently, the
objective of this paper is to develop an eight-node 3-D brick element based on the theory of a Cosserat
point. Specifically, the theory is generalized to include eight director vectors with 24 degrees of freedom (six
for rigid body motions and 18 for elastic deformations). It will be shown that a one-to-one correspondence
exits between the balance laws of the Cosserat theory and weak forms of the equations developed using the
Bubnov-Galerkin approximation procedure.

An essential difference between the Cosserat and the Bubnov—Galerkin approaches is the procedure that
each uses to develop constitutive equations. For both approaches it is possible to develop hyperelastic
constitutive equations for which the kinetic quantities are determined by derivatives of a strain energy
function. In the Cosserat theory this strain energy is specified directly as a function of the independent
variables and the constitutive coefficients are determined by comparison with exact solutions or experi-
ments. In contrast, in the Bubnov—Galerkin approach this strain energy is determined by integrating the
3-D strain energy function with the assumption that the kinematic approximation is valid pointwise. It will
be shown that even for the simple linear theory the constitutive coefficients obtained by each of these
approaches are different. In particular, the Cosserat approach eliminates known unphysical locking phe-
nomena that are caused by the Bubnov—Galerkin coefficients when no assumed enhanced strains or special
weighting functions are used.

An outline of the paper is as follows. Section 2 describes the Cosserat direct approach, Section 3 in-
troduces the kinematics of a general brick element and Section 4 discusses the Bubnov—Galerkin approach.
Section 5 considers a nonlinear patch test, Section 6 develops the linearized equations, and Section 7
determines the constitutive coefficients for inhomogeneous deformations by considering the solution to
problems of pure bending, pure torsion, and higher order hourglassing. Section 8 develops the nodal forms
of the balance laws, Section 9 proposes the numerical solution procedure and Section 10 shows that
hourglassing is absent in large compression. Section 11 summarizes the main results, and further details are
provided in Appendices A-C.

Throughout the text, bold faced symbols are used to denote vector and tensor quantities. The symbol I
denotes the unity tensor; tr(A) denotes the trace of the second order tensor A; A denotes the transpose of
A; A™! denotes the inverse of A; A" denotes the inverse of the transpose of A; and det(A) denotes the
determinant of A. The scalar a-b denotes the dot product between two vectors a,b; the scalar
A -B = tr(AB") denotes the dot product between two second order tensors A,B; the vector a x b denotes
the cross product between a and b; and the second-order tensor a ® b denotes the tensor product between a
and b. Furthermore, since the range of indices varies depending on the context, the usual summation
convention over repeated indices is suspended.
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2. Direct approach for the balance laws of a Cosserat point

Within the context of the direct approach, the kinematics of the Cosserat point in its reference configu-
ration are specified by eight constant director vectors D; (i = 0, 1,...,7). The vector D, locates the Cosserat
point relative to a fixed origin and the vectors D; (i = 1,2, 3) are linearly independent

D> =D, x D, -D; > 0. (2.1)

In its present configuration at time ¢, the Cosserat point is characterize by the eight director vectors d;(¢)
and their velocities w;, which are both functions of time only

d=d(t), wi=d, (i=0,1,....7), d'’=d; xdy-d; >0, (2.2)

where a superposed dot denotes time differentiation. The kinetic quantities include the mass m and the
constant director inertia coefficients ¥ (assumed to be a positive definite symmetric matrix)

WO=1, Y=y =0 (i,j=0,1,...,7), (2.3)

the assigned director couples b’ (i = 0, 1,2, ...,7) due to body forces, the director couples m’ due to surface
tractions on the boundaries of the Cosserat point, and the intrinsic director couples t', which require
constitutive equations.

Now, the conservation of mass and the balances of director momentum and angular momentum can be
written in the forms, respectively,

. d i i i
m =0, @ lZmy’wj] =mb'+m' —t with t'=0, (2.4a,b)

7 7
%lz Zd, xmylfw] Zd ><mb’+Zd xm  (i=0,1,...,7). (2.4¢)

Moreover, with the help of (2.4b) it can be shown that the balance of angular momentum is satisfied
provided that the tensor T is symmetric

7
T=d'?) tod=T. (2.5)

i=1

Also, within the context of the purely mechanical theory, the kinetic energy %", the rate of external work #~
done on the Cosserat point, and the rate of material dissipation & can be defined by

7 7
1
%”=_Z;_Zojzmy’fwz w, W= ZO:’""’ w,+Zm w, dPG=W —H-mE>0,  (26)
=UJ= i

where X' is the specific strain energy function. ‘ A
Next, by introducing the reciprocal vectors D' and d' (i = 1,2, 3) in terms of the Kronecker delta ¢/

D;-D=¢, d-&=0 (i,j=12,3), (2.7)
it is possible to define the deformation tensor F and its determinant J
3 ) dl/2
:Ft):Zd,»@D’, J = det(F) = 575> 0, (2.8)
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as measures of homogeneous deformation, and define the vectors B, (i = 1,2,3,4)
Bp=F'd,—-D,, B,=F'ds—Ds, B,=F'ds—Ds, B,=F"'d;—D,, (2.9)

as measures of inhomogeneous deformation. Furthermore, the rate of deformation tensor L and its sym-
metric part D are defined by

(L+L") =D". (2.10)

N —

3
L=FF'=) wod, D=

=1
Then, the equations of motion (2.4) can be used to reduce the rate of dissipation to the form

4
d'’2 =d'’T-D+> F't") . g —mE >0. (2.11)
=1
For a nonlinear anisotropic elastic Cosserat point, the strain energy function can be written in the form

>=2X(C,B), C=F'F, (2.12)

T and t are independent of the rate L, and the rate of dissipation vanishes so that T and t' are determined
by the hyperelastic constitutive equations

d'’T = 2mF2—€FT, i3 = mFTg—'i (i=1,2,3,4), (2.13a,b)
t = ld‘/zT— dted|-d (i=1,23) (2.13c)
Jj=4

Moreover, it can be shown that the kinematic and kinetic quantities in the Cosserat theory are properly
invariant under superposed rigid body motions. In particular, d; (i = 1,2,...,7) and F are rotated and C
and P, are unaltered by superposed rigid body motions.

3. A general brick element

For a general brick element with eight nodes a material point in the stress-free reference configuration is
located by the vector X* using the tri-linear representation

7
XC(0,07,0%) = Y _N(0',0%,0°)D, (3.)
Jj=0
where 6 (i = 1,2,3) are convected coordinates and N’ are shape functions
N'=1, N'=0" N*=0*, N =0,
N*=0'0", N° =00, N° =00, N =000 (32)

Similarly, the same material point in the present configuration is located by the vector x* expressed in the
form

7
X0, 0%,0°,0) = Y NI(0', 0%, 07)d,(2). (3.3)

J=0
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Fig. 1. Sketch of a general eight-node brick element showing the numbering of the nodes and the surfaces.

Moreover, the brick region P is bounded by the six surfaces 0P, (J = 1,2,...,6), such that (Fig. 1)

H w L
‘01|<57 |02|<?5 ‘03|<§’
H L
o' = 5 on or, 0 :V_ZV on dP,, 0 = 5 on oP;, (34)

0! :—g on 0P, 0* = *% on dp;, = *% on 0F,

where {H, L, W} are constant lengths. Thus, the directors D, and d;(¢) are related to the vectors D; and d,(¢)

(i=0,1,...,7) which locate the nodes in the reference and present configurations, respectively, by the
constant matrix 4;; given in Appendix A, such that
7 7
D= 4D, d=) 4., (3.5)
j=0 =0

Moreover, it is noted that the values of the nodal vectors D; and d; are limited by the assumption that the
representations (3.1) and (3.3) remain invertible. Furthermore, in view of these tri-linear representations,
the surfaces 0P, need not be planar and can have a bi-linear dependence on the surface coordinates.

4. Bubnov—Galerkin approach

Using the definitions given in Green and Adkins (1960), the conservation of mass and the balance of
linear momentum can be written as

m=m(0) = p'g"?, mV = mb ), (4.1a,b)

where m* is independent of time, p* is the current mass density, v = X" is the absolute velocity, b" is the
specific (per unit mass) body force, a superposed dot denotes material time differentiation holding 0" fixed,
the vectors t* are related to the Cauchy stress tensor T* by the formula

t = g/’ T*g/ (4.2)
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and the reference covariant base vectors G;, their reciprocal vectors G', the present covariant base vectors
g;, and their reciprocal vectors g’ are specified by

G =X, G -G=¢, G”?=G xG G;>0,

gi:XTjﬂ gi'gi:&{7 g1/2:g1 ng'g3>0 (i>j:17273)7 (43)

where a comma denotes partial differentiation with respect to 0. Also, a superscript (*) is used to distin-
guish quantities related to the 3-D theory from those related to the Cosserat theory.

Now, following the standard Bubnov—Galerkin approximation, (4.1b) is multiplied by the shape function
Ni, the representation (3.3) is used and the result is integrated over the region P of the element to obtain
weak forms of the balance of linear momentum. In particular, using the definitions

myi/:/p*NiNfdv*, mbi:/[Nip*b*]dv*, m) = N't'da", (4.4a—)
P P

oPy

6
:Z m), /N’ g ™ dvt (4,j=0,1,...,7) (J=1,2,...,6). (4.4d.e)

J=1 m= 1

It can be shown that the resulting weak equations are in one-to-one correspondence with the balance laws
(2.4b) of the Cosserat theory. In these equations dv* is the volume element and da* is the area element in the
present configuration. Also, with the help of the representation (3.3) and the definitions (4.4) it can be
shown that the global form of the balance of angular momentum is identical to the Cosserat balance law
(2.4¢).

For a hyperelastic 3-D material the Cauchy stress T" is related to the strain energy X* and the 3-D
deformation gradient F* by the formulas

X
>* 2* Z g ® Gz F*TF*, T* _ zp*F*

3 P (4.5)

It then follows that within the context of the Bubnov—Galerkin approach the constitutive equations for t'
can be written in the forms (2.13) where the strain energy function X is specified by

mZ:/p*Z*(C*)dU*. (4.6)

It is emphasized that in evaluating the integral in (4.6) the kinematic representations (3.1) and (3.3) are
assumed to valid pointwise in the region P. Moreover, for general element shapes and general nonlinear
strain energy functions it is necessary to evaluate this integral numerically. In contrast, within the context of
the Cosserat theory the dependence of strain energy function X on the variables {C, B;} is proposed directly
and the constitutive constants and functions are determined by comparison with exact solutions of the 3-D
theory or experimental data. It will be shown later that even for the simple case of the linear theory of a
rectangular parallelepiped element the constitutive coefficients obtained in these two approaches are sig-
nificantly different.

For later reference it is noted that in view of the definitions (4.4c) and the specifications (3.4) only 24 of
the 48 vectors m’, are independent since
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H H H H
1 _ 0 4 2 5 3 7 _ 6
m,; —Eml, m; —5m1, m; —3“]1, m,; Eml,
w w w w
2 0 4 1 6 3 7 5
m2 — 7“127 m2 - Tmz, m2 - Emz, m2 — 7“]27
L L L L
3 _ 0 5 1 6 __ 2 7 _ 4
m; =Sm;, Iy =_2m;, m;=_Jm;, m;=_-m;,
2 2 2 2 (4.7)
1 _ H 0 4 H 2 5 __ H 3 7 _ H 6 '
m4 = —51'1'147 m4 = —3“147 m4 = —311147 m4 = 3“’147
w w w w
2 _ 0 4 1 6 __ 3 7 _ 5
m57—7m5, msf—?ms, msf—Ems, ms——7m5,
L L L L
3 0 5 1 6 2 7 4
m. = ——-m m.=——-m m, = —m m, = —m
6 2 67 6 2 67 6 2 67 6 2 6

Also, it is convenient to define the position vectors (L to thAe centroids of the surfaces 0P;, and define the
moments m; applied to the surfaces 0P; (about the points d;) by the expressions

7
IﬁJ:Zdixmg—flemB J=12,...,6), (4.8)

i=0

where it is noted that m§ represents the total force applied to OP;.

5. A nonlinear patch test

Following previous research on shells (Naghdi and Rubin, 1995), rods (Rubin, 1996) and points (Rubin,
2000, 2001) it is possible to impose restrictions on the strain energy function X which ensure that the theory
of a Cosserat point produces solutions that are consistent with the exact 3-D theory for all homogeneous
deformations of an arbitrary uniform homogeneous anisotropic elastic material. These restrictions are
equivalent to a nonlinear patch test on the brick element. Specifically, confining attention to such a material
it can be shown that the mass m is given by

m—= pe DV (5.1)
and the restrictions on X require
0X(C,p;) _027(C) 0X(C.B) . 02(C) _0 (i—
C — ac o, =2C e V' for ;=0 (i=1,2,3,4), (5.2)

where V and V' are constants defined by Eq. (B.2). In particular, it can be shown that the 3-D deformation
is homogeneous if and only if B, vanish, which leads to F* = F. Consequently, B, are measures of inho-
mogeneous deformations.

The restrictions (5.2) can be simplified by introducing the auxiliary variables

4
F=F(Fp;V)=F|1+> p,oV"|, C=FF (5.3)
m=1
and writing the strain energy function in the form
X(C,B) =2 (C)+ ¥(C,B) (i=1234). (5.4)

Using this representation, the restrictions (5.2) require the strain energy of inhomogeneous deformations ¥
to satisfy the equations
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o¥(C.B) _ 0¥ (C.B,)

o T for B, =0 (i,m=1,273,4). (5.5)

The representation (5.4) is valid for a general elastic material with strain energy X*. Unfortunately,
general restrictions are not known which determine ¥ in terms of X* and the geometry of the structure.
Therefore, in order to develop a specific form for ¥ it is necessary to consider specific materials. To
this end, attention is focused on a 3-D isotropic material and use is made of the work of Flory
(1961), which defines a pure measure of distortional deformation. Within this context, a simple model
for a generalized compressible Neo-Hookean material can be characterized by the strain energy
function

20,2%(C) = 2K*[J — 1 —In(J)] + p*(C -1 —3), (5.6)

where K* is the bulk modulus, u* is the shear modulus and the pure measures of distortional deformation
are defined by the unimodular tensors {F C.B }, such that

4 ——1/3% —/ —/T—/ =/ —/=/T

F=J "F, J=det(F)y, C=FF, B=FF . (5.7)
Moreover, it can be shown that

02*(C)

= =DV |K* (T - 1)C ' +u /3{1—%(01)(:‘}} (5.8)

Next, it is convenient to introduce the normalized inhomogeneous strain measures

:WBI'Dla K%:HﬁrDz, K?:Lﬁl'D37
=1, D', Z=Wp,-D*, 3 =Hp, D’
=HB,-D', Z=1f;-D*, 3=Wp, D
=WLB,-D', «}=HLB,-D*, K, =HWB, D’
Then, as a special case, the inhomogeneous strain energy ¥ is assumed to be independent of C and is taken
as a quadratic function of the strains ;c; (i=1,2,3;j=1,2,3,4) of the form
2m¥ = D'PV[Ki (1)) + 2Ka(i6}13) + K3 (163)” + Ka(16])” + 2K5(1713) + Ko (163)” + Ko (1)

+ 2Ks(15K3) + Ko (13)” + Kio(k7)” + K11 (3)° + Kia(13)” + 2K 13 (k13) + 2K (K K3)
+2K15(K2K3)+K16(K4) +K17(K4) +K18(K;‘) ], (510)

where {K,—Ks} are constants to be determined in terms of material and geometric quantities. Furthermore,
using the strain energy representations (5.4), (5.6) and (5.10) the constitutive equations (2.13) yield
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[ IV
d'*T =D"*V |K*(J — 1)1+M*{B’ —S(B -I)IH,
- B o o B 1 _ o .
' =DV |K*(T - DF  +uT 2/3{F—§(B-I)F T} V!

+ D'V [W{Kix} + Koy }d' + H{Kyx; + Ksic3 3> + L{Kox; + K131 + Kyarcs }d°,

3

S T
=DV |K*(T - )F  +uT 2“{F——(B.I)F T} V2
+ D'V [L{K7xy + K }d' + W{K13 + Kisk) + Kiskey P + H{Ksk} + Keicy }d°],

(5.11)
- o Lo

=DV |K*(T - )F '+ u'T 2/3{F—§(B-I)F T} V3
+ D'V [H{K>x} + Kiai + Kisky H' + L{Ksk) + Koy }* + W{Kox| + K313 1]

e R TR T
=DV |K*(T - )F ' +uT 2/3{F—3(B-I)F T} v

+ D'V [WL{K sk }d' + HL{K 713} + HW{Ks13 1]

where the remainder of t' are determined by (2.13c).

6. Linearized equations

The equations of motion (2.4) and the constitutive equations (2.13) are valid for large deformations and
large rotations of the Cosserat point. The objective of this section is to develop simplified forms of these
equations which are limited to small strains, displacements and rotations. To this end, the director dis-
placements §; are introduced, such that

d=D;+8 (i=0,1,...,7). (6.1)
In addition, it is assumed that these displacements and the kinetic quantities
{’,m' t} (i=0,1,...,7) (6.2)

remain small enough that quadratic terms in these quantities can be neglected relative to linear terms. It
then follows that the equations of motion (2.4b) can be written as

7
> mys; = mb’ +m' — ¢ with (" =0) (i=0,1,...,7). (6.3)
=0
Next, using (6.1) and neglecting quadratic terms in , it can be shown that the kinematic quantities can be
approximated by

3
d'?=p"114+> 8 D

i=1

, F:I+z3:6,~®Di, J:1+z3:6i~Di,
i=1 i=1

3 4
, J=1+> 8-D'+> B, V"
= = (6.4)

3 4
F=[1+> 82D +> p,V"
i=1 m=1

3 3

B =8 —) (D;-D)5;, B,=85—) (Ds-D)3,
i=1 i=1

By =8 —> (De-D)3;, B, =38 —> (D;-D)3,

i=1 i=1
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so that the linearized forms of the constitutive equations (5.11) become

3 4
> 8 D> B, V"

i=1 m=1

T = VK" I+Vu

3 , 4 2 4
> {6,-®D’ +D'®§; —5(51..1)')1}
i=1

)

4
+Z{|3m V"4V @B, *%(Bm -V’”)I}

m=1

t' = D'2TV' + D'V [W{K x| + Kox3}D' + H{Kyx] + Ksic3 }D* + L{Kyok; + K353 + Kiar3 }D°),
t* = D'’TV? + D'?VIL{Ksx} + Kgi2 }D' + W{K 113 + Kiaie, + Kisi}D? + H{Ksi? + Kei } D],
t* = D'’TV? + D2V [H{K\yx} + Kiai} + Kisi3 }D' + L{Kgic) + Kor3 }D? + W{Kyx} + K313 1D,

t’ = D'?TV* + D'V [WL{K sk} } D" + HL{K 712} D* + HW {K 313 }D?],

7

t = D (i=1,2,3).
Jj=4
(6.5)
Furthermore, the linearized forms of the moments defined in (4.8) become
7
mJ:ZD,-xmj—DJxmg J=1,2,...,6), (6.6)
=0

where D are the reference values of d;.

7. Determination of the constitutive constants

The theory of a Cosserat point with the constitutive equations (5.4), (5.6), (5.10) and (5.11) requires
specification of the reference directors

D, (i=0,1,...,7), (7.1)
the inertia quantities

{m,y'}y (i,j=0,1,...7), (7.2)
the isotropic 3-D material constants

(K", 1} (7.3)
and the constitutive constants

{Ki—Ko}, {Kiw—Kis}, {KieKis}, (7.4a—)

associated with inhomogeneous deformations. Also, it is necessary to specify the assigned director couples
b’

These constitutive equations are valid for large deformations and large rotations but they also must
produce reasonable results for small deformations. Consequently, values for the constitutive constants
{K,—K3} can be determined by comparing Cosserat solutions with exact solutions of the linearized 3-D
theory of a rectangular parallelepiped. Once these constitutive constants have been determined they are
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used in the nonlinear constitutive equations to predict the response of the Cosserat point to general de-
formations and for general reference shapes of the brick element.

In the previous sections the Cosserat point has been considered to be a general brick element in its
reference configuration. Here and throughout the remainder of the text, attention is focused on a Cosserat
point which is a rectangular parallelepiped in its reference configuration. For this case the reference
directors D; can be specified such that

D1=D1:e1, D2:D2:ez, D3:D3:e3, D4:D5:])6:])7:07 (75)

where e; (i = 1,2, 3) are constant orthonormal base vectors. Using these specifications it follows from (2.1)
and (B.2) that

D=1, V=HWL, V =0 (i=1,23,4). (7.6)

It will be shown presently that the constants (7.4a) can be determined by comparing Cosserat solutions with
exact linear solutions for pure bending, the constants (7.4b) can be determined by considering solutions of
pure torsion, and the constants (7.4c) can be determined by considering an exact higher-order hourglass-
type solution.

The kinematic assumption (3.3) and the definition (6.1) suggest that the 3-D displacement field
u*(0',0%,0°,¢) is approximated by

U =38y + 0'8, + 078, + 0’85 + 0'0°8, + 0'0°85 + 0°0°8¢ + 0'0°0°5,. (7.7)

However, usually this expression is not general enough to reproduce exact solutions. Therefore, even when
the exact 3-D solution of a problem is known, it is necessary to propose some procedure for determining the
associated kinematic and kinetic quantities in the Cosserat theory. This problem has been discussed within
the context of beam equations (Rubin, 1996, 2002) and a procedure has been proposed to relate the director
displacements to integrals of the exact 3-D displacement field u*. An important characteristic of this
procedure is that it preserves the functional form of the integrated stress—strain relations. Here, this pro-
cedure is generalized and the director displacements §; are compared with the exact expressions & (z)
defined by

L2 pW/2  pHJ2
yr = / drs = / / / d0'do*de’ = v = HWL,
P -L)2 J-wj2 J-H)2

83(1):%/Pu*dV*, Sf(t):%/P ZgidV* (i=1,2,3),

1 o’u” 1 o’u
) =— | 2% ar s =— | 2% gy,
4( ) V* /P 601692 5( ) | /P 661693

1 o*u* 1 o*u*
5()=— | —mdV”, &) =— [ s dV.
o) =7 /P et =y /P 30'0000’

Moreover, motivated by the definitions (4.4c), the Cosserat quantities m’, are compared with the exact
integrated effects m; of the surface tractions which are given by
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(— 0* 03>T*<§,92,03,t)e,d02d03 (i=0,2,3,6),

.
/L// ( > <01,Z/, )edG do* (i=0,1,3,5),
L

; H
/ (—— 0 9*>T1 (—5,62,03,t>ejd92d03 (i=0,2,3,6),
L2  pHJ2
/ / N’(@l - 03) j( >e,d0‘d93 (i=0,1,3,5)
—L/2

w2 pH2 L L
/ N (91,92, — —)T@(@l, 0, ——,t)ejdé)ldez (i=0,1,2,4),
—ws2 J-np 2) " 2

in terms of the shape functions (3.2) and the components 7}; of the Cauchy stress T relative to the basis e;.
These expressions are consistent with Egs. (4.7). Also, it is convenient to use of the formulas (4.4d) and (6.6)
to define the exact kinetic quantities

c:«sw
I
[

—

6 7
=> mj, m;=)» Dixmj-D,xm) (J=12,...,6). (7.10)
i=0

J=1

7.1. Pure bending

The solution of the equilibrium of a rectangular parallelepiped subjected to pure bending with no body
force is well known (e.g. Sokolnikoff, 1956). For the general case, there are six independent solutions which
correspond to bending moments applied in two orthogonal directions on each of the three sets of opposing
surfaces, and a summary of Lekhnitskii’s solution (1963) for orthotropic materials can be found in Section
3.14 of Rubin (2000). Using this solution (with L interchanged with H) and specializing it to the case of
isotropic materials it can be shown with the help of (7.8)~(7.10) that the values §;, m" and m become

6,=0, 8 =0, & =0 8;,=0, & =0,
& = [ 12M21 % 12M23 e + 12M12 " 12M13 e
ST\ EweL ) "\ Eaw ([T \EaL T " \EEW |

[ 12M’;1 12M32 12M12 12M1';
& = -V e+ [ —V + €
> L e E*HL? E*H?L EHW ||

x [ % 12M’;1 12M32 % 12M2] 12M23 (711)
8=V {E WL } * {E*HL3 et | =" VewLf T\ Ewwr ]
m " =m'" =m> =m* =m” =0,

5 6
= HM2191 + WM12e2, m* = HM31€1 +LM13€3, m>* = W32€2 +LM23€3,
m] = Mze; — Myes, m; = —Mpe, + Mpe;, m; = Myue — Mze,,

= Msie, + Mye;, m; = Mype — Mpes, m; = —Me + Mze,
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where the rigid body displacements and rotations have been chosen so that {§;,8;,85,8;} vanish,
{Ma1, M3, My, M3y, M3, My3 } are constant moments, £* is Young’s modulus and v* is Poisson’s ratio, which
are related to K* and u* by the expressions

2w (1+v)

K =302

E*=2u"(14v"). (7.12)

In view of these results, the problem of pure bending in the Cosserat theory is formulated by
specifying

ll’llv:Hli*7 biZO, 80:61:82:53:8720,
(7.13)

3_ 212 3 i
K| =Ky = K3 = Ky = Kg = k; = 0, all other «} are nonzero.

Then, using (5.9), (6.4), (6.5), (7.5) and (7.6) the nontrivial equilibrium equations (6.3) can be solved for the
kinematic variables to obtain

I My Kk Mo K M e Mo
Lo weL L HW? s WL "\ HW?

Ky = K3

K1K3 —Ksz ’ K1K3 —K2K2 ’
M12 M13 MIZ M]3
K¢ —= v — K5 —— —Ks{ —= b + K4{ ——
o 6{H2L} 5{H2W} o S{HZL}+ 4{H2W} (7.14)
e KK — KsK T KK — KsKs ’
M31 M32 M31 M32
Kod —= v — Kg{ —= —Kgd —= b+ K7 —=
R R N Ut )
2 K7Ky — KyKy o K7Ky — KyKy ’

Moreover, it can easily be seen that this Cosserat solution will be consistent with the exact solution
(7.11) provided that the constitutive constants {K;—Ky} are specified by the values given in Table 1.
This table also includes the coefficients predicted by the Bubnov—Galerkin solution described in
Appendix C.

7.2. Pure torsion

The solution of the equilibrium of a rectangular parallelepiped subjected to pure torsion with no
body force is well known (e.g. Sokolnikoff, 1956). For the general case there are three independent
solutions which correspond to torsional moments applied perpendicular to each of the three sets of
opposing surfaces and a summary of Lekhnitskii’s solution (1963) for orthotropic materials can be
found in Rubin (2000, Section 3.15). Using this solution (with L interchanged with H) and specializing
it to the case of isotropic materials it can be shown with the help of (7.8)~(7.10) that the values &;, m”
and mj become
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Comparison of the Cosserat and Bubnov—Galerkin values of the constitutive coefficients
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Cosserat Bubnov-Galerkin
< E* rE "(1—v*)2Jr 1—v H?
! 12(1—v2) 12(1—v2)| [ T=2v 2 w2
% VE* vE* T[1—v
: 12(1 — v2) [12(1 —v2)] |1 = 2w
© E* B (1fv*)2Jr 1—v) L2
} 12(1 —v2) 121 —v2)] | 1—2v 2 w2
X E* [ E 1{(1=v) -\ W
N 12(1—v?) [12(1—v?)| [ T =2 2 JH?
% V'E* VE* 11—
> 12(1 —v2) [12(1 —v2)| [T = 2w
© E* roE 7 v*)ZJr 1—v) 12
6 12(1 —v2) 21 =v))| | 1T-2w 2 [H?
© E* B 1 =v) (1—v H?
7 12(1 —v2) 12(1 —v2)| [ 1T-2w A
% VE* VE* 11—
s 12(1 — v2) 1201 = v2)| [T =2v
X E* B 1A =v)? (1= W2
’ 12(1 — v2) 12(1 —v2)| | 1 =2y 2 12
W [H? + W2 . o TH? + w2
Kio 6| I? () 12| 7 |
w [H? + 12 w [H? + 12
K £ ‘(1 L=
! 6| bW 2| w2
w[w?+ L* w[w?+ L2
Kz 6| H? v 2| m2
w [HY) . W [H?
Kis 6 _WL}b M 12 | WL
w[w? § w2
K E=|p Ll A
” 6 _HL} m 12 |HL
w27, w2
K El=—|pr(1 Ll i
" 6 HW} m 12 |HW
K w23 -v) H_2+1£' w20 -v) H_2+H_2
16 144 [3—2v) w2 7] 144 | (1 —2v") 12|
K w 2(37v*)+z2 w* w201 =v) W2+KZ
7 144 |3 —2v)  H? ' L2 144 (1—2\/*) H?
X w -2(3—v*)+£+£' w21 =v) v*) L
1 144 [(3—2v)  H*> W2 4 |1—2)
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5 =0 =08,=08,=28 =0,

0, = [0] — ) — wiPiles, 85 = [-0] + 03P; + wiler, 85 = [P + w; — wiley,
= 32 n(2n—l)f] (1)
(&) =1-— _— tanh[i =—-9" =),
© Zl Lﬂ(zn— 1)’ 2 ¢
w w w
* * _ _ < _
D] Q)(L) forL\ ( ) forL>1,
H H H
) =" — for — <1 for — > 1, .
(L) or — < ) or =>1, (7.15)
H H
Q=" — for — <1, for—>1
w w
m”*=m"=m*=m*=m"”" =0, m* =5 (HTl WT)es,
1 1
m”* = E( HT, +LT3)e;, m* :E(WTZ —LTy)ey,
IilT:—m4:ﬂe1, ﬁl;:—ﬁl;:Tzez, ﬁlﬁ:—ﬁfg:ﬂe;,

where @; control warping of the cross-sections and use has been made of the fact that ¢*(&) converges
faster for £ <1 than for ¢ > 1. Also, the torsional stiffnesses B; and the torques 7; are given by

By = 3 M b'(&1), By = 3 M b'(&), By = 3 M b (&),

T=Biwi, T=Biwi T,= B,
W L H L H W

él = Min ) é Min s 63 = Min — L, r, (716)
LW L'H W' H

TP P ol B n2n —1)c
b*(&) = : ll =3 l(Zn 1)5] tanh{ 5 }],

where w; are the constant twists per unit length and the functions ¢; have been specified to maximize the
convergence rate of the series solutions for the stiffnesses.

In view of these results, and with the help of (5.9) and (6.4), the problem of pure torsion in the Cosserat
theory is formulated by specifying

m=m", b=0 8=8=8=98=258 =0,
3 2 1 (7.17)
K K K
8y=—tey, ds=_le, 8 =e,
L /4 H
where {7, k3, k}} are expressed in terms of the constant twists o; per unit length, and the warping variables
@;, such that

—; = — — () —% = — () —% = - P —

=W —w;— =—wtw +w == — +w, —w

17 1 2 3 1 2 P> g 191 2 3,

Ty =Biwy, T, =Byw, T;3=Bsw;s. (7.18)

Then, using (6.5), (7.5) and (7.6) the nontrivial equilibrium equations (6.3) can be solved to obtain the
results
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2W2L* (KoK K1y — KoK 3K 13 — K11K14K s + 2K13K 14K s — K10K 15K s)

B, = ,
: [Z(KnKi» — KisKis) + (Ki2Ki3 — K1uKs)]

2H?L* (KoK 1K1y — KiaKi3K13 — K11 K 14K 14 + 2K13K14K s — K10K15K)5)

B, = ’
2 [% (KuKiy — Ki5Kis) + (Ki1Kis — K13K15)}

_ 2H?W*(K 0K 11Ky — KipKi3Ki3 — K11 K14Kig + 2K13K14K 5 — KoK 5K 5)
[Z(KioKi> — KiuKis) + (Ki0K1s — K13K14) | ’

o [ £ (KisKig — KioKis) + 5 (K1 Kia — KisKis)]
| =
[%(KnKix — KisKis) + (Ki2Kis — KisKs

(7.19)

)

]
)]
T
)
]

®, =

)
[ 2 (KinKi3 — KiuKis) + £ (Ki3Kis — K1oKs
[Z(K1 K> — Ki5Kis) + (KinKis — Ki3Ks)
[4(K12K13 — KisKis) + 2 (K3Ks — K11K14) |
(4 (K1oKi2 — KiaKis) + (KioKis — K13K14)

3 =

together with the restrictions that
L
(K11Ki; — Ki5Ky5) = W (K10K12 — K14K14),

(KK — Ki5Kis) = — (KoK — Ki3Ki3), (7.20)

H
(KoK 1> — K14K14) = — (Ki0K11 — Ki3K13).

SIS
h

TS

In contrast with the case of pure bending, it does not appear to be possible to choose values of the
constitutive coefficients so that the Cosserat solution will predict exact results for pure torsion for all geo-
metries of the rectangular parallelepiped. Consequently, some compromise has to be made. To this end, the
Cosserat coefficients are specified by modifying the Bubnov—Galerkin coefficients such that

* H2+ WZ i * H2 —|—L2 i * WZ +L2 i
Klozu—{i}b (1), K“:H_[ }b (1), Klzzu—{i}b (1),

6 L2 6 /& 6 H?
,Ll* H2 ,l,t* W2 #* L2 (721)
Kiy=—|—|[b*(1), Kyu=—|—|b"(1 Kis=—|—|b"(1).
"6 {WL] (1), K= {HL} (1), Kis=7 {HW] (m)
In particular, these coefficients satisfy the restrictions (7.20) and they produce the results
WWAL? [2b*(1) WHL? [2b7(1) WHW? [ 2b*(1)
Bl = w L |’ Bz = ’ B3 = )
3 [ Z+L 3 |[Z+L 3 E+7
L w L H w H (7 22)
w_ L H__ L H__ W ’
¢1:L W, ®2:L H7 ¢3:W H.
A T A 1

The Galerkin coefficients in Table 1 also satisfy the restrictions (7.20) and when they are substituted into
(7.19), they yield the same warping functions @; as those in (7.22) for the Cosserat solution, but the stiff-
nesses B; are different. Specifically, the functional forms of the normalized torsional stiffnesses [i.e. the
associated functions in the square brackets in (7.22) for B;, respectively] are given by

2b*(1 1
blE) GE) =T Gilé) =
& &

: (7.23)
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Fig. 2. (a) Normalized torsional stiffnesses predicted by the exact solution 4%, the Cosserat solution C; and the Bubnov—Galerkin
solution G, and (b) warping functions predicted by the exact solution @] and the Cosserat (and Bubnov—Galerkin) solution @;.

where b* corresponds to the exact solution (7.16), and C; and G, correspond to the Cosserat and Bubnov—
Galerkin solutions, respectively. Moreover due to the symmetry of these functions the full range can be
explored by considering (0 < ¢; < 1). Fig. 2a compares these normalized torsional stiffnesses and Fig. 2b
compares the warping functions ¢} and @,. From these figures it can be seen that the Cosserat solution for
normalized torsional stiffness is quite accurate and that the Cosserat solution for warping is acceptable.
Moreover, it is noted from Fig. 2a that the Bubnov—Galerkin solution has the most error for the case of
a square cross-section (&, = 1).

7.3. Higher-order hourglassing
The remaining constitutive coefficients {K4—Kjs} in the strain energy function (5.10) control the stiff-

nesses to higher order hourglassing associated with warping. These coefficients can be determined by
considering the exact equilibrium solution associated with no body force which is given by

u; =2(3 - 2)C0'P0° — Co(01)0° — C3(0')0,
0, = —C(07)26° +2(3 — 20)C20' 0P0° — C36' (67)’,
uy = —Ci0°(0°) — GO'(0°) +2(3 — 20) 30" 0°0°,

T = 1 [43 —v) G207 — 4(1 —v)0:0'0° — 4(1 — v)C30'67],

(7.24)

where u} are the components of the 3-D displacement vector u* relative to ¢; and {C;, C», C3} are constants.
Now, it can be shown with the help of (7.8), (7.9) and (7.10) that the values 8;, m"*, and m, become
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5 =8, =0, =0,=0,

: & 1% [ L
& = { 12C3}e2+ { 12Cz}ea, %, = |:—12C3:|e1 + { nc‘}e“

H? w2
6; = |: 12 C2:| €] + |: 12 Cl 027 6 2(3 — 2V )[Clel + C2e2 + C3e3}7
m”=m*=m> =m® =0
. [ wHWL | *HWL
m1 = _[1 B (H2+W2)C3 e + |:_,U 2 (H2+L2)C2}e3,
. : *HWL 1 *HWL
m = |4 P (H> + W?)Cs | e + {— . B Us +L2)C1}es, (7:25)
. : *HWL - *HWL
m3 = —’u (H2+L2)C2 e + _‘u (W2+L2)Cl €,
I 12 12
. *HWL
m’ = {23 = v)W2L* + (3 — 2v" ) H*(W? +L2)}Cl} el
W HWL i
[ {23 = Vv)H?L* + (3 — 2v")W*(H* + Lz)}Cz} €

[M*HWL (23 = v)HW? + (3 = 2v)L*(H* + Wz)}C3]e3.

To develop the Csosserat solution it is convenient express the displacements 6, and & in terms of their
components

3 3
8 =) dye ZS; fori=0,1,...,7, (7.26a,b)
J=1 j=1

where a superposed (~) is used to avoid confusion with the components of the Kronecker delta symbol. In
view of these results, the Cosserat solution is taken in the form
m=m", b =0 & =d.e + e,
8 = duie; + Ones, 8 = dye; + ones, (7.27)
0, =05=0,=0, & = 57191 + 57262 + 57333-
Then, using (5.9), (6.4), (6.5), (7.5) and (7.6) the nontrivial equilibrium equations (6.3) can be solved and

compared with the exact results (7.25) to deduce that {d7,d7,07;} will be exact provided that
{K16,K17, K13} are specified by

w23 -v) H? H2 w23 —v) w? W2
Kig = =, Kp=~if-|22 2 -
7 144 [(3 ottt YT m| o Tt e
o[- L
Kis = S 2
¥ 144 {(3 —2v) tm 3 w2 |’ (7.28)

which are different from the Bubnov—Galerkin values in Table 1. Furthermore, the other equations of
equilibrium give values of the other displacement components which are related to the exact values (7.25)
by the expressions
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512_1 H2 51';_1 H2
5;;5{”% s oAU ey

13

521 1 Wz 523 1 Wz
= =14+ — == {14 — 2
5y 2{1 H> 5, 2 ! 2 [’ (7.29)

531 1 L2 532 1 L2
o+, 2=+ b
5, 2 { + H? |’ 5, 2 + w2

Thus, it is impossible to reproduce the exact solution unless the element is a cube (H = W = L). Never-
theless, the hourglass coefficients will be specified by (7.28) for all dimensions of the element.

7.4. Positive definite strain energy

Using the Cosserat values of the constitutive coefficients given in Table 1 it can be shown that the strain
energy function ¥ in (5.10) for inhomogeneous deformations can be rewritten in the form

E*HWL
2m¥ = [(1L+ v ){(x] +3)° + (k] +13)° + (i) + 13)°}

24(1 — v?2)
* * 2
i HILY (1) [HZ{KT;%}

(=)} = )+ (= 1)+ (b — k) + LW

+HM[K16{K411}2 + K17{Ki}2 + KIS{Ki}z]a (7.30)

Consequently, in view of the usual restrictions

1
w0, 1<y <z, (7.31)

and the fact that {Kj, K}7, Kj5 } are positive, it follows that ¥ is a positive definite function of its arguments.

7.5. Director inertia coefficients

Using the expression (4.4a), the Bubnov—Galerkin values of the director inertia coefficients y¥ are given
by
H? w? L?
s Y = Y E Y T (7.32a-d)

H*W? H*IL? W2L? H*W?[?
y44 = — y55 = —27 y66 = —27 y77 = 73’ (7326—}1)
(12) (12) (12)

all other y” = 0. (7.321)

Motivated these values, it is assumed in the Cosserat theory that (7.32a) and (7.32i) hold, but the remaining
coefficients

S S LR R L A (7.33)

need to be determined by matching solutions of vibration problems. Specifically, attention is focused on
free-vibrations of the element. Apart from notational changes, it can be shown that the equations for
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extensional vibrations and shear vibrations are the same as those already analyzed in (Rubin, 1986). The
work their indicates that {y'',1?? 1**} should be specified by
H? w? L?
i _ 2 33 _

y =2 Y =2 =2 (7.34)
instead of the Bubnov—Galerkin values (7.32b,c,d). In principle, the remaining values of 1 could be de-
termined by comparing with the exact solution of Hutchinson and Zillmer (1983), but this is not pursued
here due to the complexity of that solution. Until this more complete analysis is done, it is tempting use the
relationships between the Cosserat values (7.34) and the Bubnov—Galerkin values (7.32b,c,d) to modify the
Bubnov—Galerkin values (7.32f,g,h) and specify

H*W? H?I? w22 H*W?[?

J = 55 = 66 _ YT = '

’ ) )
4 7-1:4 TC4

(7.35)

i 7o

8. Nodal forms of the balance laws

In the Cosserat theory developed in the previous sections it has been most convenient to express the
equations of motions and the constitutive equations in terms of the director quantities d; (( =0, 1,....,7).
This was particularly useful in expressing the restrictions (5.5) associated with 3-D homogeneous defor-
mations. In contrast, in the finite element method the equations are usually expressed in terms of nodal
variables. Specifically, using the definitions (3.5) the director velocities w; can be expressed in terms of the
nodal velocities w; = d;. Furthermore, by introducing the definitions

77 7
J_/'ij :J_"ﬁ = Z ZAriymASj? Bi = ZAribra (81avb)
r=0 s=0 r=0
‘ 7 ‘ 7 . 7
m) =Y Am, (J=12,..6), m=> 4m, €= At (8.1c—e)
r=0 r=0 r=0
the director momentum equations (2.4b) can be written in the nodal forms
d | < _ R
5 > mpw;| =mb+m —€ (i=0,1,...,7), (8.2)
=0

where b’ are specific nodal body forces, m’ are nodal contact forces, and t are nodal internal forces [unlike
t’ in (2.4b), the nodal vector t° does not necessarily vanish]. Also, it can be shown that energy quantities
(2.6) can be written in their nodal forms

(8.3)

where #, is the rate of work of nodal body forces and 7. is the rate of work of nodal contact forces. In
particular, it is important to emphasize that although the nodal equations are written in terms of nodal
quantities, the constitutive equations for t' are most conveniently expressed as functions t' which depend
directly on director variables.
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Moreover, using the definitions (4.4c,d) and the results (4.7), it follows that the eight vectors m' are
defined in terms of the 24 independent vectors in the set m’,. Specifically, the external nodal forces m’ can be
expressed in the forms

mO:/ [1—0—2—0—3+@]t*da*+/ [1—0—1—0—3+@}t*da*
o, L4 2W 2L WL o L4 2H 2L HL

v [ w- e
o L4 2H 2W  HW ’

mu/ 19_29_3+@t*d*+/ 100 0 06,
I Y2 VA 1770 R WS PO 7 R VAR 7770

+/ l+0_1,0_2,ﬁ t'da*
or, L4 2H 2W  HW ’

ﬁ,zf/ 1+92939293t»«d*+/ 100 0 00,
I/ Y VAR 77 R SR O V7 Y7770 ki
+/ LS pr
o L4 2H Tow T EW |

m3_/ 1 0 03+0193 t*d*+/ 1+02 0 0% dat
I ST BT 77 A WS YT VAR 1770

+/ 1 01+02 0'0? dat

———t - a

on L4 2H 2W  HW ’
m4_/ 1 0 02+0‘02 t*d*+/ 1 02+03 0’0’ da
T Jw 4 20 2w T T L4 aw T

+/ 1 0 +03 0'o’ dat

o |4 2H 2L HL| O
ms_/ 1 02+03 0*0° t*d*+/ 1+91 0> 007 dat
I O ST R VAR 777 R WS DOV 7 YT 717

+/ l+0—1+0—3+@ tda*
o |4 2H 2L HL ’

mf’—/ l+0—2+0—3+@t*d*+/ 1+6—1+0—3+ﬁt*d*
T ld T aw T | T 4 2m T L |

+/ LA P
o |4 20 2w HEHW ]

mv_/ 16 0 00 t»«d*+/ A
S ld 20 2L HL | T ) |4 2H Tow T mw

+/ AN AL P
o4 T ow T T |0

Thus, with the help of Fig. 1 it can be seen that each external nodal force is influenced only by surface
tractions on the three surfaces 0P, which intersect that node.
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Furthermore, for the linear theory it is assumed that the nodal vectors d; can be expressed in the
forms

ai:ﬁ,-—FSf (1.2071,...77), (85)

where D; are the reference values of d;, and §; are displacements. In addition, it is assumed that these
displacements and the kinetic quantities

b’ m' t} (i=0,1,...,7) (8.6)

remain small enough that quadratic terms in these quantities can be neglected relative to linear terms. It
then follows that the linearized forms of equations of motion (8.2) can be written as

7 . . L
S iy = mb @ — € (1=0,1,...,7). (®.7)

9. Numerical solution procedure

The theory of a Cosserat point developed in the previous sections can be used to formulate the numerical
solution of 3-D problems in nonlinear elasticity. Just as in the standard finite element procedure, the body is
modeled as a collection of M elements which interact through their common boundaries. Here, the /th
element (/ =1,2,...,M) is modeled as a Cosserat point with boundaries ;0P; (J/ =1,2,...,0).

In general, the Cosserat theory allows the element in its stress-free reference configuration to be a general
eight node brick element. The values of the constitutive coefficients {K;—K3} developed in Section 7 were
determined for the special case when the reference shape is a rectangular parallelepiped. Nevertheless, the
tensorial structure of the theory is used to generalize the equations for general brick elements. Although,
additional research is required to determine the accuracy of this generalization, the resulting theory is valid
for nonlinear deformations of a general brick element.

The kinematics and kinetics of the /th Cosserat point are characterized by the nodal equations of Section
8 with a subscript 7 added to the left of each quantity (including the lengths H, W, L) and with no implied
sum on repeated upper cased indices. Specifically, the directors ;d;, the director velocities ;w;, the nodal
directors ;d; and nodal director velocities ;W; of the /th element are denoted by

A, ow=d, A, w=,4d (I=12,...M) (i=01,...7). (9.1)

Also, the nodal equations of director momentum (8.2) of the /th element become

7
> imy Wy = mb @l — € (I=1,2,....M) (i=0,1,...,7), (9.2)
Jj=0

where the constitutive equations for the nodal internal forces ;t' are determined by the formulas developed

in the previous sections and the nodal contact forces ;m’ are determined by formulas of the type (8.4).

For a given topology of the body, the M elements are characterized by N global nodes which are located
relative to a fixed origin by the global position vectors d;, (K =1,2,...,N). Consequently, the Cosserat
points are connected by the kinematic coupling conditions

{1(_10 or ,;d, or ;d, or ;d; or ,d, or ;ds or ;,d¢ or 1(_17} =d, (K=1,2,...,N). (9.3)

The Cosserat points are also connected by the kinetic coupling conditions

> =my, (9.4)

(1,i:K)
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where my are nodal external concentrated forces, and the special summation symbol indicates that the
summation is performed over all forces i (i =0,1,...,7) and all elements / (/ = 1,2,...,M) which have
nodes that coincide with the Kth node. Next, solving the equations of motion (9.2) for ;m’, these kinetic
coupling conditions can be rewritten in the forms

7
Z Z{M]j/ijIW/ — Imll_)i + 1{1’ = m}} (K = 1, 2, N ,N) (95)

(1i:K) L j=0

If the Kth node is an interior node then expressions of the type (8.4) indicate that the external nodal forces
due to the elements that have the common node K are associated with the common boundaries that in-
tersect that node. Consequently, since the traction vector is a linear function of the outward normal, it
follows that the external nodal force mj vanishes for interior nodes

m; =0 for interior nodes K. (9.6)

At an exterior node K the value of m}, is specified by
m;( = Z [Imi]Extv (97)
(1,i:K)

where the value of [;m'];, is determined by expressions of the type (8.4) with the only nonzero terms being
those associated with the exterior surfaces that intersect the node K.

The discretized equations of motion (9.5) represent N vector ordinary differential equations to determine
the N nodal vectors d}, as functions of time. Since these equations are second-order in time it follows that
initial conditions must be specified of the forms

d; (0) = specified, dj(0) = specified. (9.8)

The boundary conditions associated with the global body under consideration appear in the equations of
motion (9.5) tacitly through the nodal contact forces mj;. To analyze the nature of these conditions it is
convenient to use (8.3) to express the rate of work done on the /th element due to nodal contact forces in
the form

7
W= Zlﬁli Wi 9.9)
=0

Consequently, with the help of the coupling equations (9.3) and (9.4), the rate of work done on the entire
body due to contact forces can be written as

M N
W, :;,m:;m;-d;;. (9.10)

It therefore follows that the work due to surface tractions is done on the body only through external nodal
forces applied to external nodes. Specifically, the boundary conditions can be specified at each external
node as kinematic conditions

d(¢) = specified, (9.11)
with m}, being determined by the equations of motions, or kinetic conditions
m; (¢) = specified, (9.12)

with dj being determined by the equations of motion, or by mixed-mixed boundary conditions where some
components of dj, and the other components of m}, are specified at the same node K.
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10. Large deformation uniaxial stress

It is well known (Wriggers and Reese, 1996; Reese and Wriggers, 2000; Reese et al., 2000; Wall et al.,
2000) that standard finite elements for nonlinear elasticity can lose stiffness to hourglassing when they are
severely compressed. Here, it is shown that the Cosserat point developed in the previous sections does not
exhibit this unphysical phenomena. To this end, consider the large deformation associated with uniaxial
uniform Cauchy stress 73; acting in the e; direction on the block shown in Fig. 3. In order to explore the
effects of potential hourglassing, a nonlinear deformation is considered for which the nodal vectors are
given by

bH bW i . bW
di=-—Fea-75e-d &=-Fe-ie
. _bH bW . bH
h=ga-garie d=gatoe,
. bH bW %
d5:7€1+7€2—5ez7 d6:7e2—5e27
bH bw bH
d; = *Tel +7€2 — 5027 d; = *761 —+ 5e27 d; = 5e27 (101)

L
d. =d,_,+ %e3 +28e, (K =10,11,12,14,15,16),

L
d; =d, , + %e3 —2%e, (K =13,17,18),
&, =d. , +ale; (K=19,20,...,27),

where 6 characterizes the magnitude of hourglassing (Fig. 4) and « and b are stretches associated with the
underlying homogeneous deformation (6 = 0). Now, using the fact that the dimensions of the /th element
are specified by

H w L
IH:E, ]W:7, ILZE, (102)
€
19
50P3
20 27
) P3 69P3
2 23 79,
69P1 0P,
12 13 “
30P
20P; 0P
3 4 5
&

Fig. 3. Sketch of a 3-D block discretized by eight elements showing the global numbering of the nodes and the element numbering of
the exposed surfaces.
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&
19

26 25

=

Fig. 4. Sketch of nonlinear deformation of a 3-D block with assumed hourglass modes.

it can be shown that the directors ;d; in the /th element are given by

1 1

1d0 = Z [7bHel — bWez + LZLC3]7 2d0 = Z [bHel — bWez + aLe3],
1 1

3dy = Z [bHe1 +bWe, + aLeg], 4dy = Z [—bHe1 + bWe, + aLe3],

1
1d0 == 1,4(10 +§aLe3 for I = 5, 6, 7, 8,
Idlzbel, ]dzzbez, ]dgzae3, 1d4 :1d5 :1d7:0 fOI‘[ZI,Z,..‘,S,

16 16
,dﬁz—ﬁéez for 7 =1,2,7,8, ,dézﬁéez for I =3,4,5,6.

Moreover, the reference values ;D; of the directors are given by

Di=e, Dry=e, /Di=e;, Dy=;Ds=,Dg=,D;=0 for7=1,2,...,8,

4609

(10.3)

(10.4)

so that with the help of (10.2) and the kinematical definitions (2.8), (2.9) and (5.9), it can be shown that

F=ble,Re +e;2e) +alese;), J=ab*, P, =1P,=p,=0 forli=12,...,8,

16 16
153:_M662 forI:l,2,7,8, 1B3zméez forI:3,4,5,6,

Ky =kb=m,=0 for/=1,2,...,8 and i=1,2,3,

ah =l =0 forr=1,2,...,8,

8 8
1K§:—W5 forI=1,2,7,8, IKZZ;:WO forI:3,4,5,6.

(10.5)

Furthermore, using (2.13c), (5.7), (5.11), (7.6), (10.2) and using the Cosserat material constants in Table 1
(with H, W, L replaced by ;H, ;W, ;L), the constitutive equations for each element can be written in the

forms
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wb —a’)

HWL
1/2 _ *
,d/,T_—8 [K J— DI+ VEE

{(ey e +e,®e) —2(e;® e;)}},

HWL (B —
]tO — It4 — lt7 — 07 Itl — |:K*(J_ 1) +M—m:|el’

8b 3J2/3

HWL w(b? —a?) 2v'E*HL 7.
2 * _ -\ =7 _ - = 2
= {K =D+ |@ 3(1 —v2)bd oer,

(10.6)

H 2 *(h2 _ 42

€= M[ *(J_U_%]ez for 1=1,2,....8,
a

v E*HWL? v E*HWL?
=4 20 e, =4 2T lse, forl=1,2,7,8
! {24(1v*2)b2} oo {24(1v*2)b2} € fori= s

v E*HWL? v E*HWL?
=36 =3 tde, forl=3,456.
! {24(1 - v*Z)bz} e {24(1 - v*Z)bZ} ¢ forE= %

For the problem under consideration, body force is neglected, and the top (0° = L) and bottom (0° = 0)
surfaces are considered to be frictionless parallel planes with the vertical (e;) distance between them being
controlled by the stretch a. Also, the lateral surfaces (' = +H /2; 0> = +W /2) are traction free with the
magnitude of the stretch b being determined by the solution of the problem. Consequently, the external
nodal forces mj}, satisfy the conditions

my-e =0, my-e=0 for K = 1-9,19-27

(10.7)
m; =0 for K = 10-18,
where the vertical components of the external nodal forces on the top and bottom surfaces are determined
by the solution of the problem.

Next, the solution must satisfy each of the kinetic coupling equation (9.5). However, in order to show
that the solution of this problem necessarily corresponds to homogeneous deformation with no hourglass
mode (0 = 0) it is sufficient to consider the equation of equilibrium at the exterior node K = 10. Specifi-
cally, it can be shown that the kinetic equation (9.5) corresponding to (K = 10) reduces to

1 [HWL w(b* — a?) 2v*E*HL 5 4 V' E*HWL?
| ey 4 D B D B e el
W[ 8b { V=D+=375— 12~ (30 =vop 0 | TEL\ 230 = v S0

4 [ vE'HWL?
+ﬁ{m}562:0, (108)

which can be solved to deduce that

*(bz _ a2)

_ RN _ ,
0=0, K'U-1)+"55"=0. (10.9a,b)

The first equation indicates that the hourglass mode necessarily vanishes for all values of the stretch a, and
the second equation is used to determine the value of b for a specified value of a. Consequently, the
resulting solution is consistent with the exact solution for homogeneous deformation of the block.
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11. Summary

The theory of a Cosserat point has been used to formulate a new 3-D finite element for the numerical
analysis of dynamic problems in nonlinear elasticity. Within the context of the direct approach to the
development of the Cosserat theory, the Cosserat point is characterized by eight director vectors which are
determined by balance laws and constitutive equations. For hyperelastic response, the constitutive equa-
tions for the director couples are determined by derivatives of a strain energy function. Restrictions are
imposed on the strain energy function which ensure that the element satisfies a nonlinear version of the
patch test.

The kinematics of this element are consistent with the standard tri-linear approximation in an eight-node
brick element. Nodal equations have been developed which are assembled using common finite element
methods based on kinematic and kinetic coupling at common nodes. Specifically, the nodal equations
represent a system of ordinary differential equations which depend on time only. These equations can be
integrated using standard numerical methods to determine the dynamic response of a nonlinear elastic
body.

It has been shown that the Cosserat balance laws are in one-to-one correspondence with those obtained
using a Bubnov—Galerkin formulation. Nevertheless, there is an essential difference between the two ap-
proaches in the procedure for obtaining the strain energy function. Specifically, the constitutive coefficients
for inhomogeneous deformations in the Cosserat approach are determined by comparison with exact
solutions or experimental data. In contrast, the Bubnov—Galerkin approach determines these constitutive
coefficients by integrating the 3-D strain energy function using the kinematic approximation.

The constitutive coefficients in Table 1 cause the Cosserat theory to predict exact results for pure bending
and accurate results for pure torsion of a rectangular parallelepiped, even in the limit that the element
becomes a thin plate. In contrast, the constitutive coefficients associated with the Bubnov—Galerkin
approach yield an incorrect response even for a cube and they exhibit unphysical stiffness for pure bending
in this plate limit. Also, it is known (e.g. Simo et al., 1993) that the Bubnov—Galerkin coefficients exhibit
locking for bending in the incompressible limit when v* = 1/2 [i.e. the Bubnov—Galerkin coefficients
{K1—Ky} in Table 1 become infinite]. In contrast, the Cosserat coefficients {K;—Ky} in Table 1 remain finite
so this locking is absent in the Cosserat theory.

Although the constitutive coefficients for inhomogeneous deformations in the Cosserat theory were
determined by comparison with exact linear solutions, the resulting theory is valid for large deformations.
Furthermore, the tensorial structure of the Cosserat theory is used model general reference geometry of the
brick element. With the help of this nonlinear theory it has also been shown that the Cosserat theory
eliminates unphysical hourglassing in large compression without the need for using assumed enhanced
strains or special weighting functions. This result is partially due to the specific nonlinear kinematic vari-
ables that are introduced in the Cosserat theory.

Ultimately, the response of the finite element formulation is dependent on the functional form of the
strain energy and not on the specific procedure used to obtain it. Consequently, the Cosserat approach,
which proposes a functional form of the strain energy directly in terms of the independent variables, yields
an efficient use of the reduced number of degrees of freedom in the element. Also, it appears that the same
3-D element can be used in the limit of thin plates.
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Appendix A. Transformation matrix for the nodal representation
Using the numbering system shown in Fig. 1, the transformation matrix 4;; in (3.5) is given by
1
AQ/ = g{la L1 L, 1}7

1
AU :E{_LLI»_L_LLL_I}’

1
AZ/ :W{_L_lv 17 17_1’_17 17 1}’
1
Ay =g 1L L L), Al
1 (A.1)
Ay = 5 AL =1L =1L 1 =11, -1,
1
As; :ﬁ{lv—l,—l, L-1,1,1, -1},
1
A6j :m{1717_17—17_17_17 171}5

1
A U R U

Appendix B. Details of homogeneous deformations

The quantities ¥ and V’ in (5.1) and the restrictions (5.2) associated with the nonlinear patch test for
homogeneous deformations are related to integrals over the region Py occupied by the point in its reference
configuration by the formulas

3
D'y = / dve, DV =Y / INUBIGM Vs (i=1,2,3,4), (B.1)
Py prar )
where dV* = G1/2d6" d6* d® is the reference element of volume and the reciprocal vectors G are defined in
(4.3). Specifically, using the kinematic representation (3.1) and defining P, by (3.4), these integrals yield the
expressions

2 2

H? W L
DI/ZV:HWL{DI/2+ﬁD4 x Ds - D, JFED6 ><D4-D2+ED5 x Dg - D3|,

[H? w2
D'2yV' = HWL T3 Ds X D1+ 55 Do x D6],

- B.2
1/217y2 H’ L (B2
D'/*VV- = HWL —D1XD4+—D6XD3 s
12 12
'WZ LZ
D'?yV3 = HWL ED4><D2+ED3 ><D5}7 D'?yv* = 0.

Appendix C. Determination of the Bubnov—Galerkin coefficients

Using the kinematic approximation (7.7) it follows that the linearized 3-D strain tensor E* can be
expressed in the form
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3 au* 6 .
Zl [691® i+e® aei];NE,-,

1
EO:E:§[81®el+e1®61+62®e2+e2®82+63®e3+e3®63]7
1
E=z0sRe;+e 004 +05Re;+e;R0
2[4 2T e ® oy 5 ®e; +e; s), .
1
E, 5[64®e1+e1®64+86®e3+e3®66]
1
1= 5B @e e @85+ 8 we + e @3,
1 1 1
5[67®e3+e3®57}, E5:§[67®e2+e2®87]7 E6=§[57®91+91®57]-

Next, for the linear theory of an elastically isotropic material, the 3-D strain energy function corresponding
to (5.6) becomes

*

1

! }(E*-I)2+E*-E*, E'=E - (E"-IL

1—2vy*

1

Consequently, for the rectangular parallelepiped discussed in Section 8 the strain energy (4.6) can be re-
written in the form

L2 w2 pHJ2
mx = / / / Py 2 (E7)do' do* de’, (C.3)
-L)2 J-w/2 J-H/2
which yields
mZ =mX*(E) + m'P,

H wr o Lo,
m¥ = Emz (Ey) +§m2 (Ey) + Emz (E3) (C4)
27172 272 212
+ag M2 (B g mE () 4 g m2 (B
Also, with the help of (5.9), (6.4) and (7.6) it can be shown that
il 12 i3 1 K2 K3
54:p7}e1+ﬁ192+f1937 55:f2e1+W2e2+ﬁ2e3, Cs5
Kl sz K3 K] KZ K3 ( . )
8 = e +2et+ ey, S =-—re -+ tet e
“TH'TL w WL T HL T HW

Next, comparison of (C.4) with the expression (7.15) yields the Bubnov—Galerkin coefficients given in
Table 1.
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